Biblio

Found 1137 results

Filters: First Letter Of Last Name is X  [Clear All Filters]
2022-07-15
Yu, Hongtao, Zheng, Haihong, Xu, Yishu, Ma, Ru, Gao, Dingli, Zhang, Fuzhi.  2021.  Detecting group shilling attacks in recommender systems based on maximum dense subtensor mining. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :644—648.
Existing group shilling attack detection methods mainly depend on human feature engineering to extract group attack behavior features, which requires a high knowledge cost. To address this problem, we propose a group shilling attack detection method based on maximum density subtensor mining. First, the rating time series of each item is divided into time windows and the item tensor groups are generated by establishing the user-rating-time window data models of three-dimensional tensor. Second, the M-Zoom model is applied to mine the maximum dense subtensor of each item, and the subtensor groups with high consistency of behaviors are selected as candidate groups. Finally, a dual-input convolutional neural network model is designed to automatically extract features for the classification of real users and group attack users. The experimental results on the Amazon and Netflix datasets show the effectiveness of the proposed method.
2022-07-29
Tao, Qian, Tong, Yongxin, Li, Shuyuan, Zeng, Yuxiang, Zhou, Zimu, Xu, Ke.  2021.  A Differentially Private Task Planning Framework for Spatial Crowdsourcing. 2021 22nd IEEE International Conference on Mobile Data Management (MDM). :9—18.
Spatial crowdsourcing has stimulated various new applications such as taxi calling and food delivery. A key enabler for these spatial crowdsourcing based applications is to plan routes for crowd workers to execute tasks given diverse requirements of workers and the spatial crowdsourcing platform. Despite extensive studies on task planning in spatial crowdsourcing, few have accounted for the location privacy of tasks, which may be misused by an untrustworthy platform. In this paper, we explore efficient task planning for workers while protecting the locations of tasks. Specifically, we define the Privacy-Preserving Task Planning (PPTP) problem, which aims at both total revenue maximization of the platform and differential privacy of task locations. We first apply the Laplacian mechanism to protect location privacy, and analyze its impact on the total revenue. Then we propose an effective and efficient task planning algorithm for the PPTP problem. Extensive experiments on both synthetic and real datasets validate the advantages of our algorithm in terms of total revenue and time cost.
2022-01-31
Zhang, Yun, Li, Hongwei, Xu, Guowen, Luo, Xizhao, Dong, Guishan.  2021.  Generating Audio Adversarial Examples with Ensemble Substituted Models. ICC 2021 - IEEE International Conference on Communications. :1–6.
The rapid development of machine learning technology has prompted the applications of Automatic Speech Recognition(ASR). However, studies have shown that the state-of-the-art ASR technologies are still vulnerable to various attacks, which undermines the stability of ASR destructively. In general, most of the existing attack techniques for the ASR model are based on white box scenarios, where the adversary uses adversarial samples to generate a substituted model corresponding to the target model. On the contrary, there are fewer attack schemes in the black-box scenario. Moreover, no scheme considers the problem of how to construct the architecture of the substituted models. In this paper, we point out that constructing a good substituted model architecture is crucial to the effectiveness of the attack, as it helps to generate a more sophisticated set of adversarial examples. We evaluate the performance of different substituted models by comprehensive experiments, and find that ensemble substituted models can achieve the optimal attack effect. The experiment shows that our approach performs attack over 80% success rate (2% improvement compared to the latest work) meanwhile maintaining the authenticity of the original sample well.
2022-02-22
Gao, Chungang, Wang, Yongjie, Xiong, Xinli, Zhao, Wendian.  2021.  MTDCD: an MTD Enhanced Cyber Deception Defense System. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:1412—1417.
Advanced persistent threat (APT) attackers usually conduct a large number of network reconnaissance before a formal attack to discover exploitable vulnerabilities in the target network and system. The static configuration in traditional network systems provides a great advantage for adversaries to find network targets and launch attacks. To reduce the effectiveness of adversaries' continuous reconnaissance attacks, this paper develops a moving target defense (MTD) enhanced cyber deception defense system based on software-defined networks (SDN). The system uses virtual network topology to confuse the target network and system information collected by adversaries. Also Besides, it uses IP address randomization to increase the dynamics of network deception to enhance its defense effectiveness. Finally, we implemented the system prototype and evaluated it. In a configuration where the virtual network topology scale is three network segments, and the address conversion cycle is 30 seconds, this system delayed the adversaries' discovery of vulnerable hosts by an average of seven times, reducing the probability of adversaries successfully attacking vulnerable hosts by 83%. At the same time, the increased system overhead is basically within 10%.
2022-05-10
Ben, Yanglin, Chen, Ming, Cao, Binghao, Yang, Zhaohui, Li, Zhiyang, Cang, Yihan, Xu, Zheng.  2021.  On Secrecy Sum-Rate of Artificial-Noise-Aided Multi-user Visible Light Communication Systems. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Recently, the physical layer security (PLS) is becoming an important research area for visible light communication (VLC) systems. In this paper, the secrecy rate performance is investigated for an indoor multi-user visible light communication (VLC) system using artificial noise (AN). In the considered model, all users simultaneously communicate with the legitimate receiver under wiretap channels. The legitimate receiver uses the minimum mean squared error (MMSE) equalizer to detect the received signals. Both lower bound and upper bound of the secrecy rate are obtained for the case that users' signals are uniformly distributed. Simulation results verify the theoretical findings and show the system secrecy rate performance for various positions of illegal eavesdropper.
2022-05-06
Yu, Xiujun, Chen, Huifang, Xie, Lei.  2021.  A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
2022-07-01
Xie, Yuncong, Ren, Pinyi, Xu, Dongyang, Li, Qiang.  2021.  Security and Reliability Performance Analysis for URLLC With Randomly Distributed Eavesdroppers. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
This paper for the first time investigate the security and reliability performance of ultra-reliable low-latency communication (URLLC) systems in the presence of randomly distributed eavesdroppers, where the impact of short blocklength codes and imperfect channel estimation are jointly considered. Based on the finite-blocklength information theory, we first derive a closed-form approximation of transmission error probability to describe the degree of reliability loss. Then, we also derive an asymptotic expression of intercept probability to characterize the security performance, where the impact of secrecy protected zone is also considered. Simulation and numerical results validate the accuracy of theoretical approximations, and illustrate the tradeoff between security and reliability. That is, the intercept probability of URLLC systems can be suppressed by loosening the reliability requirement, and vice versa. More importantly, the theoretical analysis and methodologies presented in this paper can offer some insights and design guidelines for supporting secure URLLC applications in the future 6G wireless networks.
2022-04-13
Guo, Lei, Xing, Yiping, Jiang, Chunxiao, Bai, Lin.  2021.  A NFV-based Resource Orchestration Algorithm for DDoS Mitigation in MEC. 2021 International Wireless Communications and Mobile Computing (IWCMC). :961—967.

With the emergence of computationally intensive and delay sensitive applications, mobile edge computing(MEC) has become more and more popular. Simultaneously, MEC paradigm is faced with security challenges, the most harmful of which is DDoS attack. In this paper, we focus on the resource orchestration algorithm in MEC scenario to mitigate DDoS attack. Most of existing works on resource orchestration algorithm barely take into account DDoS attack. Moreover, they assume that MEC nodes are unselfish, while in practice MEC nodes are selfish and try to maximize their individual utility only, as they usually belong to different network operators. To solve such problems, we propose a price-based resource orchestration algorithm(PROA) using game theory and convex optimization, which aims at mitigating DDoS attack while maximizing the utility of each participant. Pricing resources to simulate market mechanisms, which is national to make rational decisions for all participants. Finally, we conduct experiment using Matlab and show that the proposed PROA can effectively mitigate DDoS attack on the attacked MEC node.

2022-05-03
Xu, Jun, Zhu, Pengcheng, Li, Jiamin, You, Xiaohu.  2021.  Secure Computation Offloading for Multi-user Multi-server MEC-enabled IoT. ICC 2021 - IEEE International Conference on Communications. :1—6.

This paper studies the secure computation offloading for multi-user multi-server mobile edge computing (MEC)-enabled internet of things (IoT). A novel jamming signal scheme is designed to interfere with the decoding process at the Eve, but not impair the uplink task offloading from users to APs. Considering offloading latency and secrecy constraints, this paper studies the joint optimization of communication and computation resource allocation, as well as partial offloading ratio to maximize the total secrecy offloading data (TSOD) during the whole offloading process. The considered problem is nonconvex, and we resort to block coordinate descent (BCD) method to decompose it into three subproblems. An efficient iterative algorithm is proposed to achieve a locally optimal solution to power allocation subproblem. Then the optimal computation resource allocation and offloading ratio are derived in closed forms. Simulation results demonstrate that the proposed algorithm converges fast and achieves higher TSOD than some heuristics.

2021-12-20
Wen, Peisong, Xu, Qianqian, Jiang, Yangbangyan, Yang, Zhiyong, He, Yuan, Huang, Qingming.  2021.  Seeking the Shape of Sound: An Adaptive Framework for Learning Voice-Face Association. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :16342–16351.
Nowadays, we have witnessed the early progress on learning the association between voice and face automatically, which brings a new wave of studies to the computer vision community. However, most of the prior arts along this line (a) merely adopt local information to perform modality alignment and (b) ignore the diversity of learning difficulty across different subjects. In this paper, we propose a novel framework to jointly address the above-mentioned issues. Targeting at (a), we propose a two-level modality alignment loss where both global and local information are considered. Compared with the existing methods, we introduce a global loss into the modality alignment process. The global component of the loss is driven by the identity classification. Theoretically, we show that minimizing the loss could maximize the distance between embeddings across different identities while minimizing the distance between embeddings belonging to the same identity, in a global sense (instead of a mini-batch). Targeting at (b), we propose a dynamic reweighting scheme to better explore the hard but valuable identities while filtering out the unlearnable identities. Experiments show that the proposed method outperforms the previous methods in multiple settings, including voice-face matching, verification and retrieval.
2021-12-22
Zhang, Yuyi, Xu, Feiran, Zou, Jingying, Petrosian, Ovanes L., Krinkin, Kirill V..  2021.  XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction. 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT). :13–16.
The results of evaluating explanations of the black-box model for prediction are presented. The XAI evaluation is realized through the different principles and characteristics between black-box model explanations and XAI labels. In the field of high-dimensional prediction, the black-box model represented by neural network and ensemble models can predict complex data sets more accurately than traditional linear regression and white-box models such as the decision tree model. However, an unexplainable characteristic not only hinders developers from debugging but also causes users mistrust. In the XAI field dedicated to ``opening'' the black box model, effective evaluation methods are still being developed. Within the established XAI evaluation framework (MDMC) in this paper, explanation methods for the prediction can be effectively tested, and the identified explanation method with relatively higher quality can improve the accuracy, transparency, and reliability of prediction.
2022-02-07
Xuelian, Gao, Dongyan, Zhao, Yi, Hu, Jie, Gan, Wennan, Feng, Ran, Zhang.  2021.  An Active Shielding Layout Design based on Smart Chip. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1873–1877.
Usually on the top of Smart Chip covered with active shielding layer to prevent invasive physical exploration tampering attacks on part of the chip's function modules, to obtain the chip's critical storage data and sensitive information. This paper introduces a design based on UMC55 technology, and applied to the safety chip active shielding layer method for layout design, the layout design from the two aspects of the metal shielding line and shielding layer detecting circuit, using the minimum size advantage and layout design process when the depth of hidden shielding line interface and port order connection method and greatly increased the difficulty of physical attack. The layout design can withstand most of the current FIB physical attack technology, and has been applied to the actual smart card design, and it has important practical significance for the security design and attack of the chip.
2022-03-22
Xu, Ben, Liu, Jun.  2021.  False Data Detection Based On LSTM Network In Smart Grid. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :314—317.
In contrast to traditional grids, smart grids can help utilities save energy, thereby reducing operating costs. In the smart grid, the quality of monitoring and control can be fully improved by combining computing and intelligent communication knowledge. However, this will expose the system to FDI attacks, and the system is vulnerable to intrusion. Therefore, it is very important to detect such erroneous data injection attacks and provide an algorithm to protect the system from such attacks. In this paper, a FDI detection method based on LSTM has been proposed, which is validated by the simulation on the ieee-14 bus platform.
2022-03-01
Zhao, Ruijie, Li, Zhaojie, Xue, Zhi, Ohtsuki, Tomoaki, Gui, Guan.  2021.  A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
With the ubiquitous network applications and the continuous development of network attack technology, all social circles have paid close attention to the cyberspace security. Intrusion detection systems (IDS) plays a very important role in ensuring computer and communication systems security. Recently, deep learning has achieved a great success in the field of intrusion detection. However, the high computational complexity poses a major hurdle for the practical deployment of DL-based models. In this paper, we propose a novel approach based on a lightweight deep neural network (LNN) for IDS. We design a lightweight unit that can fully extract data features while reducing the computational burden by expanding and compressing feature maps. In addition, we use inverse residual structure and channel shuffle operation to achieve more effective training. Experiment results show that our proposed model for intrusion detection not only reduces the computational cost by 61.99% and the model size by 58.84%, but also achieves satisfactory accuracy and detection rate.
2022-03-08
Xiaoqian, Xiong.  2021.  A Sensor Fault Diagnosis Algorithm for UAV Based on Neural Network. 2021 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :260–265.
To improve the security and reliability of the system in case of sensor failure, a fault diagnosis algorithm based on neural network is proposed to locate the fault quickly and reconstruct the control system in this paper. Firstly, the typical airborne sensors are introduced and their common failure modes are analyzed. Then, a new method of complex feature extraction using wavelet packet is put forward to extract the fault characteristics of UAV sensors. Finally, the observer method based on BP neural network is adopted to train and acquire data offline, and to detect and process single or multiple sensor faults online. Matlab simulation results show that the algorithm has good diagnostic accuracy and strong generalization ability, which also has certain practicability in engineering.
2022-03-22
Xi, Lanlan, Xin, Yang, Luo, Shoushan, Shang, Yanlei, Tang, Qifeng.  2021.  Anomaly Detection Mechanism Based on Hierarchical Weights through Large-Scale Log Data. 2021 International Conference on Computer Communication and Artificial Intelligence (CCAI). :106—115.
In order to realize Intelligent Disaster Recovery and break the traditional reactive backup mode, it is necessary to forecast the potential system anomalies, and proactively backup the real-time datas and configurations. System logs record the running status as well as the critical events (including errors and warnings), which can help to detect system performance, debug system faults and analyze the causes of anomalies. What's more, with the features of real-time, hierarchies and easy-access, log data can be an ideal source for monitoring system status. To reduce the complexity and improve the robustness and practicability of existing log-based anomaly detection methods, we propose a new anomaly detection mechanism based on hierarchical weights, which can deal with unstable log data. We firstly extract semantic information of log strings, and get the word-level weights by SIF algorithm to embed log strings into vectors, which are then feed into attention-based Long Short-Term Memory(LSTM) deep learning network model. In addition to get sentence-level weight which can be used to explore the interdependence between different log sequences and improve the accuracy, we utilize attention weights to help with building workflow to diagnose the abnormal points in the execution of a specific task. Our experimental results show that the hierarchical weights mechanism can effectively improve accuracy of perdition task and reduce complexity of the model, which provides the feasibility foundation support for Intelligent Disaster Recovery.
2022-02-24
Lin, Junxiong, Xu, Yajing, Lu, Zhihui, Wu, Jie, Ye, Houhao, Huang, Wenbing, Chen, Xuzhao.  2021.  A Blockchain-Based Evidential and Secure Bulk-Commodity Supervisory System. 2021 International Conference on Service Science (ICSS). :1–6.
In recent years, the commodities industry has grown rapidly under the stimulus of domestic demand and the expansion of cross-border trade. It has also been combined with the rapid development of e-commerce technology in the same period to form a flexible and efficient e-commerce system for bulk commodities. However, the hasty combination of both has inspired a lack of effective regulatory measures in the bulk industry, leading to constant industry chaos. Among them, the problem of lagging evidence in regulatory platforms is particularly prominent. Based on this, we design a blockchain-based evidential and secure bulk-commodity supervisory system (abbr. BeBus). Setting different privacy protection policies for each participant in the system, the solution ensures effective forensics and tamper-proof evidence to meet the needs of the bulk business scenario.
2022-02-22
Chen, Zhongyong, Han, Liegang, Xu, Yongshun, Yu, Zuwei.  2021.  Design and Implementation of A Vulnerability-Tolerant Reverse Proxy Based on Moving Target Defense for E-Government Application. 2021 2nd Information Communication Technologies Conference (ICTC). :270—273.
The digital transformation is injecting energy into economic growth and governance improvement for the China government. Digital governance and e-government services are playing a more and more important role in public management and social governance. Meanwhile, cyber-attacks and threats become the major challenges for e-government application systems. In this paper, we proposed a novel dynamic access entry scheme for web application, which provide a rapidly-changing defender-controlled attack surface based on Moving Target Defense (MTD) technology. The scheme can turn the static keywords of Uniform Resource Locator (URL) into the dynamic and random ones, which significantly increase the cost to adversaries attack. We present the prototype of the proposed scheme and evaluate the feasibility and effectiveness. The experimental results demonstrated the scheme is practical and effective.
2022-02-04
Liu, Zepeng, Xiao, Shiwu, Dong, Huanyu.  2021.  Identification of Transformer Magnetizing Inrush Current Based on Empirical Mode Decomposition. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
Aiming at the fact that the existing feature quantities cannot well identify the magnetizing inrush current during remanence and bias and the huge number of feature quantities, a new identification method using empirical mode decomposition energy index and artificial intelligence algorithm is proposed in 'this paper. Decomposition and denoising are realized through empirical mode decomposition, and then the corresponding energy index is obtained for the waveform of each inherent modal component and simplified by the mean impact value method. Finally, the accuracy of prediction using artificial intelligence algorithm is close to 100%. This reflects the practicality of the method proposed in 'this article.
2022-02-25
Xie, Bing, Tan, Zilong, Carns, Philip, Chase, Jeff, Harms, Kevin, Lofstead, Jay, Oral, Sarp, Vazhkudai, Sudharshan S., Wang, Feiyi.  2021.  Interpreting Write Performance of Supercomputer I/O Systems with Regression Models. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :557—566.

This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to 10 x on some samples for both of the target systems.

2022-03-10
Qin, Shuangling, Xu, Chaozhi, Zhang, Fang, Jiang, Tao, Ge, Wei, Li, Jihong.  2021.  Research on Application of Chinese Natural Language Processing in Constructing Knowledge Graph of Chronic Diseases. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :271—274.
Knowledge Graph can describe the concepts in the objective world and the relationships between these concepts in a structured way, and identify, discover and infer the relationships between things and concepts. It has been developed in the field of medical and health care. In this paper, the method of natural language processing has been used to build chronic disease knowledge graph, such as named entity recognition, relationship extraction. This method is beneficial to forecast analysis of chronic disease, network monitoring, basic education, etc. The research of this paper can greatly help medical experts in the treatment of chronic disease treatment, and assist primary clinicians with making more scientific decision, and can help Patients with chronic diseases to improve medical efficiency. In the end, it also has practical significance for clinical scientific research of chronic disease.
2022-06-15
Xie, Shuang, Hong, Yujie, Wang, Xiangdie, Shen, Jie.  2021.  Research on Data Security Technology Based on Blockchain Technology. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :26–31.
Blockchain started with Bitcoin, but it is higher than Bitcoin. With the deepening of applied research on blockchain technology, this new technology has brought new vitality to many industries. People admire the decentralized nature of the blockchain and hope to solve the problems caused by the operation of traditional centralized institutions in a more fair and effective way. Of course, as an emerging technology, blockchain has many areas for improvement. This article explains the blockchain technology from many aspects. Starting from the typical architecture of the blockchain, the data structure and system model of the blockchain are first introduced. Then it expounds the development of consensus algorithms and compares typical consensus algorithms. Later, the focus will be on smart contracts and their application platforms. After analyzing some of the challenges currently faced by the blockchain technology, some scenarios where the blockchain is currently developing well are listed. Finally, it summarizes and looks forward to the blockchain technology.
2022-10-12
Ding, Xiong, Liu, Baoxu, Jiang, Zhengwei, Wang, Qiuyun, Xin, Liling.  2021.  Spear Phishing Emails Detection Based on Machine Learning. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :354—359.
Spear phishing emails target to specific individual or organization, they are more elaborated, targeted, and harmful than phishing emails. The attackers usually harvest information about the recipient in any available ways, then create a carefully camouflaged email and lure the recipient to perform dangerous actions. In this paper we present a new effective approach to detect spear phishing emails based on machine learning. Firstly we extracted 21 Stylometric features from email, 3 forwarding features from Email Forwarding Relationship Graph Database(EFRGD), and 3 reputation features from two third-party threat intelligence platforms, Virus Total(VT) and Phish Tank(PT). Then we made an improvement on Synthetic Minority Oversampling Technique(SMOTE) algorithm named KM-SMOTE to reduce the impact of unbalanced data. Finally we applied 4 machine learning algorithms to distinguish spear phishing emails from non-spear phishing emails. Our dataset consists of 417 spear phishing emails and 13916 non-spear phishing emails. We were able to achieve a maximum recall of 95.56%, precision of 98.85% and 97.16% of F1-score with the help of forwarding features, reputation features and KM-SMOTE algorithm.
2021-12-20
Cheng, Zhihao, Xu, Qiwei, Long, Sheng, Zhang, Yixuan.  2021.  Thrust Force Ripple Optimization of MEMS Permanent Magnet Linear Motor Based on Harmonic Current Injection. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
This paper presents a method optimizing the thrust force of a Micro Electro Mechanical System (MEMS) Permanent Magnet Linear Motor, based on harmonic current injection. Fourier decomposition is implemented to the air gap flux density of the motor to derive the fitting expression of the thrust force dependent to exciting current. Through analyzing the thrust force ripple of sinusoidal current excitement, the paper comes up with the strategy of harmonic current injection to eliminate the ripple component in the thrust force waveform. Mathematical demonstration is given that injecting harmonic current can totally eliminate the ripple caused by odd component of vertical air gap magnetic induction intensity. Simulation verification is implemented based on the 3rd and 7th harmonic injection control strategy, proving that the method is feasible for the thrust ripple is reduced to 4.3% of the value before optimazation. Experimental results lead to the consistent conclusion that the strategy shows good steady-state and dynamic performance.
2022-08-26
Xia, Hongbing, Bao, Jinzhou, Guo, Ping.  2021.  Asymptotically Stable Fault Tolerant Control for Nonlinear Systems Through Differential Game Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :262—266.
This paper investigates an asymptotically stable fault tolerant control (FTC) method for nonlinear continuous-time systems (NCTS) with actuator failures via differential game theory (DGT). Based on DGT, the FTC problem can be regarded as a two-player differential game problem with control player and fault player, which is solved by utilizing adaptive dynamic programming technique. Using a critic-only neural network, the cost function is approximated to obtain the solution of the Hamilton-Jacobi-Isaacs equation (HJIE). Then, the FTC strategy can be obtained based on the saddle point of HJIE, and ensures the satisfactory control performance for NCTS. Furthermore, the closed-loop NCTS can be guaranteed to be asymptotically stable, rather than ultimately uniformly bounded in corresponding existing methods. Finally, a simulation example is provided to verify the safe and reliable fault tolerance performance of the designed control method.