Biblio
Filters: First Letter Of Last Name is Z [Clear All Filters]
Multilayer Network Modeling and Stability Analysis of Internet of Battlefield Things. 2022 IEEE International Systems Conference (SysCon). :1—6.
.
2022. Intelligent service network under the paradigm of the Internet of Things (IoT) uses sensor and network communication technology to realize the interconnection of everything and real-time communication between devices. Under the background of combat, all kinds of sensor devices and equipment units need to be highly networked to realize interconnection and information sharing, which makes the Internet of Things technology hopeful to be applied in the battlefield to interconnect these entities to form the Internet of Battlefield Things (IoBT). This paper analyzes the related concepts of IoBT, and constructs the IoBT multilayer dependency network model according to the typical characteristics and topology of IoBT, then constructs the weighted super-adjacency matrix according to the coupling weights within and between different layers, and the stability model of IoBT is analyzed and derived. Finally, an example of IoBT network is given to provide a reference for analyzing the stability factors of IoBT network.
Multi-level security defense method of smart substation based on data aggregation and convolution neural network. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1987–1991.
.
2022. Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
Multi-subject information interaction and one-way hash chain authentication method for V2G application in Internet of Vehicles. 2022 4th International Conference on Intelligent Information Processing (IIP). :134–137.
.
2022. Internet of Vehicles consists of a three-layer architecture of electric vehicles, charging piles, and a grid dispatch management control center. Therefore, V2G presents multi-level, multi-agent and frequent information interaction, which requires a highly secure and lightweight identity authentication method. Based on the characteristics of Internet of Vehicles, this paper designs a multi-subject information interaction and one-way hash chain authentication method, it includes one-way hash chain and key distribution update strategy. The operation experiment of multiple electric vehicles and charging piles shows that the algorithm proposed in this paper can meet the V2G ID authentication requirements of Internet of Vehicles, and has the advantages of lightweight and low consumption. It is of great significance to improve the security protection level of Internet of Vehicles V2G.
Network Security Situation Assessment Method Based on Absorbing Markov Chain. 2022 International Conference on Networking and Network Applications (NaNA). :556–561.
.
2022. This paper has a new network security evaluation method as an absorbing Markov chain-based assessment method. This method is different from other network security situation assessment methods based on graph theory. It effectively refinement issues such as poor objectivity of other methods, incomplete consideration of evaluation factors, and mismatching of evaluation results with the actual situation of the network. Firstly, this method collects the security elements in the network. Then, using graph theory combined with absorbing Markov chain, the threat values of vulnerable nodes are calculated and sorted. Finally, the maximum possible attack path is obtained by blending network asset information to determine the current network security status. The experimental results prove that the method fully considers the vulnerability and threat node ranking and the specific case of system network assets, which makes the evaluation result close to the actual network situation.
Networked Control System Information Security Platform. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :738–742.
.
2022. With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Neural Network-Based DDoS Detection on Edge Computing Architecture. 2022 4th International Conference on Applied Machine Learning (ICAML). :1—4.
.
2022. The safety of the power system is inherently vital, due to the high risk of the electronic power system. In the wave of digitization in recent years, many power systems have been digitized to a certain extent. Under this circumstance, network security is particularly important, in order to ensure the normal operation of the power system. However, with the development of the Internet, network security issues are becoming more and more serious. Among all kinds of network attacks, the Distributed Denial of Service (DDoS) is a major threat. Once, attackers used huge volumes of traffic in short time to bring down the victim server. Now some attackers just use low volumes of traffic but for a long time to create trouble for attack detection. There are many methods for DDoS detection, but no one can fully detect it because of the huge volumes of traffic. In order to better detect DDoS and make sure the safety of electronic power system, we propose a novel detection method based on neural network. The proposed model and its service are deployed to the edge cloud, which can improve the real-time performance for detection. The experiment results show that our model can detect attacks well and has good real-time performance.
A New Digital Predistortion Based On B spline Function With Compressive Sampling Pruning. 2022 International Wireless Communications and Mobile Computing (IWCMC). :1200–1205.
.
2022. A power amplifier(PA) is inherently nonlinear device and is used in a communication system widely. Due to the nonlinearity of PA, the communication system is hard to work well. Digital predistortion (DPD) is the way to solve this problem. Using Volterra function to fit the PA is what most DPD solutions do. However, when it comes to wideband signal, there is a deduction on the performance of the Volterra function. In this paper, we replace the Volterra function with B-spline function which performs better on fitting PA at wideband signal. And the other benefit is that the orthogonality of coding matrix A could be improved, enhancing the stability of computation. Additionally, we use compressive sampling to reduce the complexity of the function model.
ISSN: 2376-6506
NMI-FGSM-Tri: An Efficient and Targeted Method for Generating Adversarial Examples for Speaker Recognition. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :167–174.
.
2022. Most existing deep neural networks (DNNs) are inexplicable and fragile, which can be easily deceived by carefully designed adversarial example with tiny undetectable noise. This allows attackers to cause serious consequences in many DNN-assisted scenarios without human perception. In the field of speaker recognition, the attack for speaker recognition system has been relatively mature. Most works focus on white-box attacks that assume the information of the DNN is obtainable, and only a few works study gray-box attacks. In this paper, we study blackbox attacks on the speaker recognition system, which can be applied in the real world since we do not need to know the system information. By combining the idea of transferable attack and query attack, our proposed method NMI-FGSM-Tri can achieve the targeted goal by misleading the system to recognize any audio as a registered person. Specifically, our method combines the Nesterov accelerated gradient (NAG), the ensemble attack and the restart trigger to design an attack method that generates the adversarial audios with good performance to attack blackbox DNNs. The experimental results show that the effect of the proposed method is superior to the extant methods, and the attack success rate can reach as high as 94.8% even if only one query is allowed.
A non-interactive verifiable computation model of perceptual layer data based on CP-ABE. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). :799—803.
.
2022. The computing of smart devices at the perception layer of the power Internet of Things is often insufficient, and complex computing can be outsourced to server resources such as the cloud computing, but the allocation process is not safe and controllable. Under special constraints of the power Internet of Things such as multi-users and heterogeneous terminals, we propose a CP-ABE-based non-interactive verifiable computation model of perceptual layer data. This model is based on CP-ABE, NPOT, FHE and other relevant safety and verifiable theories, and designs a new multi-user non-interactive secure verifiable computing scheme to ensure that only users with the decryption key can participate in the execution of NPOT Scheme. In terms of the calculation process design of the model, we gave a detailed description of the system model, security model, plan. Based on the definition given, the correctness and safety of the non-interactive safety verifiable model design in the power Internet of Things environment are proved, and the interaction cost of the model is analyzed. Finally, it proves that the CP-ABE-based non-interactive verifiable computation model for the perceptual layer proposed in this paper has greatly improved security, applicability, and verifiability, and is able to meet the security outsourcing of computing in the power Internet of Things environment.
A Novel Blockchain-Driven Framework for Deterring Fraud in Supply Chain Finance. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1000–1005.
.
2022. Frauds in supply chain finance not only result in substantial loss for financial institutions (e.g., banks, trust company, private funds), but also are detrimental to the reputation of the ecosystem. However, such frauds are hard to detect due to the complexity of the operating environment in supply chain finance such as involvement of multiple parties under different agreements. Traditional instruments of financial institutions are time-consuming yet insufficient in countering fraudulent supply chain financing. In this study, we propose a novel blockchain-driven framework for deterring fraud in supply chain finance. Specifically, we use inventory financing in jewelry supply chain as an illustrative scenario. The blockchain technology enables secure and trusted data sharing among multiple parties due to its characteristics of immutability and traceability. Consequently, information on manufacturing, brand license, and warehouse status are available to financial institutions in real time. Moreover, we develop a novel rule-based fraud check module to automatically detect suspicious fraud cases by auditing documents shared by multiple parties through a blockchain network. To validate the effectiveness of the proposed framework, we employ agent-based modeling and simulation. Experimental results show that our proposed framework can effectively deter fraudulent supply chain financing as well as improve operational efficiency.
ISSN: 2577-1655
Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
.
2022. Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
.
2022. In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
Operator Partitioning and Parallel Scheduling Optimization for Deep Learning Compiler. 2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :205–211.
.
2022. TVM(tensor virtual machine) as a deep learning compiler which supports the conversion of machine learning models into TVM IR(intermediate representation) and to optimise the generation of high-performance machine code for various hardware platforms. While the traditional approach is to parallelise the cyclic transformations of operators, in this paper we partition the implementation of the operators in the deep learning compiler TVM with parallel scheduling to derive a faster running time solution for the operators. An optimisation algorithm for partitioning and parallel scheduling is designed for the deep learning compiler TVM, where operators such as two-dimensional convolutions are partitioned into multiple smaller implementations and several partitioned operators are run in parallel scheduling to derive the best operator partitioning and parallel scheduling decisions by means of performance estimation. To evaluate the effectiveness of the algorithm, multiple examples of the two-dimensional convolution operator, the average pooling operator, the maximum pooling operator, and the ReLU activation operator with different input sizes were tested on the CPU platform, and the performance of these operators was experimentally shown to be improved and the operators were run speedily.
An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication. 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). :1–8.
.
2022. Wrist-worn devices enable access to essential information and they are suitable for a wide range of applications, such as gesture and activity recognition. Wrist-worn devices require appropriate technologies when used in sensitive areas, overcoming vulnerabilities in regard to security and privacy. In this work, we propose an approach to recognize wrist rotation by utilizing Visible Light Communication (VLC) that is enabled by low-cost LEDs in an indoor environment. In this regard, we address the channel model of a VLC communicating wristband (VLCcw) in terms of the following factors. The directionality and the spectral composition of the light and the corresponding spectral sensitivity and the directional characteristics of the utilized photodiode (PD). We verify our VLCcw from the simulation environment by a small-scale experimental setup. Then, we analyze the system when white and RGBW LEDs are used. In addition, we optimized the VLCcw system by adding more receivers for the purpose of reducing the number of LEDs on VLCcw. Our results show that the proposed approach generates a feasible real-world simulation environment.
Optimization and Prediction of Intelligent Tourism Data. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :186–188.
.
2022. Tourism is one of the main sources of income in Australia. The number of tourists will affect airlines, hotels and other stakeholders. Predicting the arrival of tourists can make full preparations for welcoming tourists. This paper selects Queensland Tourism data as intelligent data. Carry out data visualization around the intelligent data, establish seasonal ARIMA model, find out the characteristics and predict. In order to improve the accuracy of prediction. Based on the tourism data around Queensland, build a 10 layer Back Propagation neural network model. It is proved that the network shows good performance for the data prediction of this paper.
Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
.
2022. With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
An Overview of Sybil Attack Detection Mechanisms in VFC. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :117–122.
.
2022. Vehicular Fog Computing (VFC) has been proposed to address the security and response time issues of Vehicular Ad Hoc Networks (VANETs) in latency-sensitive vehicular network environments, due to the frequent interactions that VANETs need to have with cloud servers. However, the anonymity protection mechanism in VFC may cause the attacker to launch Sybil attacks by fabricating or creating multiple pseudonyms to spread false information in the network, which poses a severe security threat to the vehicle driving. Therefore, in this paper, we summarize different types of Sybil attack detection mechanisms in VFC for the first time, and provide a comprehensive comparison of these schemes. In addition, we also summarize the possible impacts of different types of Sybil attacks on VFC. Finally, we summarize challenges and prospects of future research on Sybil attack detection mechanisms in VFC.
P4-NSAF: defending IPv6 networks against ICMPv6 DoS and DDoS attacks with P4. ICC 2022 - IEEE International Conference on Communications. :5005—5010.
.
2022. Internet Protocol Version 6 (IPv6) is expected for widespread deployment worldwide. Such rapid development of IPv6 may lead to safety problems. The main threats in IPv6 networks are denial of service (DoS) attacks and distributed DoS (DDoS) attacks. In addition to the similar threats in Internet Protocol Version 4 (IPv4), IPv6 has introduced new potential vulnerabilities, which are DoS and DDoS attacks based on Internet Control Message Protocol version 6 (ICMPv6). We divide such new attacks into two categories: pure flooding attacks and source address spoofing attacks. We propose P4-NSAF, a scheme to defend against the above two IPv6 DoS and DDoS attacks in the programmable data plane. P4-NSAF uses Count-Min Sketch to defend against flooding attacks and records information about IPv6 agents into match tables to prevent source address spoofing attacks. We implement a prototype of P4-NSAF with P4 and evaluate it in the programmable data plane. The result suggests that P4-NSAF can effectively protect IPv6 networks from DoS and DDoS attacks based on ICMPv6.
Perception of physical and virtual agents: exploration of factors influencing the acceptance of intrusive domestic agents. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1050–1057.
.
2022. Domestic robots and agents are widely sold to the grand public, leading us to ethical issues related to the data harvested by such machines. While users show a general acceptance of these robots, concerns remain when it comes to information security and privacy. Current research indicates that there’s a privacy-security trade-off for better use, but the anthropomorphic and social abilities of a robot are also known to modulate its acceptance and use. To explore and deepen what literature already brought on the subject we examined how users perceived their robot (Replika, Roomba©, Amazon Echo©, Google Home©, or Cozmo©/Vector©) through an online questionnaire exploring acceptance, perceived privacy and security, anthropomorphism, disclosure, perceived intimacy, and loneliness. The results supported the literature regarding the potential manipulative effects of robot’s anthropomorphism for acceptance but also information disclosure, perceived intimacy, security, and privacy.
ISSN: 1944-9437
A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
.
2022. Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
Poisoning Attack against Online Regression Learning with Maximum Loss for Edge Intelligence. 2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT). :169—173.
.
2022. Recent trends in the convergence of edge computing and artificial intelligence (AI) have led to a new paradigm of “edge intelligence”, which are more vulnerable to attack such as data and model poisoning and evasion of attacks. This paper proposes a white-box poisoning attack against online regression model for edge intelligence environment, which aim to prepare the protection methods in the future. Firstly, the new method selects data points from original stream with maximum loss by two selection strategies; Secondly, it pollutes these points with gradient ascent strategy. At last, it injects polluted points into original stream being sent to target model to complete the attack process. We extensively evaluate our proposed attack on open dataset, the results of which demonstrate the effectiveness of the novel attack method and the real implications of poisoning attack in a case study electric energy prediction application.
A POMDP-based Robot-Human Trust Model for Human-Robot Collaboration. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :1009–1014.
.
2022. Trust is a cognitive ability that can be dependent on behavioral consistency. In this paper, a partially observable Markov Decision Process (POMDP)-based computational robot-human trust model is proposed for hand-over tasks in human-robot collaborative contexts. The robot's trust in its human partner is evaluated based on the human behavior estimates and object detection during the hand-over task. The human-robot hand-over process is parameterized as a partially observable Markov Decision Process. The proposed approach is verified in real-world human-robot collaborative tasks. Results show that our approach can be successfully applied to human-robot hand-over tasks to achieve high efficiency, reduce redundant robot movements, and realize predictability and mutual understanding of the task.
ISSN: 2642-6633
Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
.
2022. Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824
RDP-WGAN: Image Data Privacy Protection Based on Rényi Differential Privacy. 2022 18th International Conference on Mobility, Sensing and Networking (MSN). :320–324.
.
2022. In recent years, artificial intelligence technology based on image data has been widely used in various industries. Rational analysis and mining of image data can not only promote the development of the technology field but also become a new engine to drive economic development. However, the privacy leakage problem has become more and more serious. To solve the privacy leakage problem of image data, this paper proposes the RDP-WGAN privacy protection framework, which deploys the Rényi differential privacy (RDP) protection techniques in the training process of generative adversarial networks to obtain a generative model with differential privacy. This generative model is used to generate an unlimited number of synthetic datasets to complete various data analysis tasks instead of sensitive datasets. Experimental results demonstrate that the RDP-WGAN privacy protection framework provides privacy protection for sensitive image datasets while ensuring the usefulness of the synthetic datasets.
Remote Disaster Recovery and Backup of Rehabilitation Medical Archives Information System Construction under the Background of Big Data. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :575—578.
.
2022. Realize the same-city and remote disaster recovery of the infectious disease network direct reporting system of the China Medical Archives Information Center. Method: A three-tier B/S/DBMS architecture is used in the disaster recovery center to deploy an infectious disease network direct reporting system, and realize data-level disaster recovery through remote replication technology; realize application-level disaster recovery of key business systems through asynchronous data technology; through asynchronous the mode carries on the network direct report system disaster tolerance data transmission of medical files. The establishment of disaster recovery centers in different cities in the same city ensures the direct reporting system and data security of infectious diseases, and ensures the effective progress of continuity work. The results show that the efficiency of remote disaster recovery and backup based on big data has increased by 9.2%