Biblio

Filters: Author is Xu, C.  [Clear All Filters]
2021-02-08
Wang, Y., Wen, M., Liu, Y., Wang, Y., Li, Z., Wang, C., Yu, H., Cheung, S.-C., Xu, C., Zhu, Z..  2020.  Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :125–135.
The PyPI ecosystem has indexed millions of Python libraries to allow developers to automatically download and install dependencies of their projects based on the specified version constraints. Despite the convenience brought by automation, version constraints in Python projects can easily conflict, resulting in build failures. We refer to such conflicts as Dependency Conflict (DC) issues. Although DC issues are common in Python projects, developers lack tool support to gain a comprehensive knowledge for diagnosing the root causes of these issues. In this paper, we conducted an empirical study on 235 real-world DC issues. We studied the manifestation patterns and fixing strategies of these issues and found several key factors that can lead to DC issues and their regressions. Based on our findings, we designed and implemented Watchman, a technique to continuously monitor dependency conflicts for the PyPI ecosystem. In our evaluation, Watchman analyzed PyPI snapshots between 11 Jul 2019 and 16 Aug 2019, and found 117 potential DC issues. We reported these issues to the developers of the corresponding projects. So far, 63 issues have been confirmed, 38 of which have been quickly fixed by applying our suggested patches.
2020-11-30
Pan, T., Xu, C., Lv, J., Shi, Q., Li, Q., Jia, C., Huang, T., Lin, X..  2019.  LD-ICN: Towards Latency Deterministic Information-Centric Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :973–980.
Deterministic latency is the key challenge that must be addressed in numerous 5G applications such as AR/VR. However, it is difficult to make customized end-to-end resource reservation across multiple ISPs using IP-based QoS mechanisms. Information-Centric Networking (ICN) provides scalable and efficient content distribution at the Internet scale due to its in-network caching and native multicast capabilities, and the deterministic latency can promisingly be guaranteed by caching the relevant content objects in appropriate locations. Existing proposals formulate the ICN cache placement problem into numerous theoretical models. However, the underlying mechanisms to support such cache coordination are not discussed in detail. Especially, how to efficiently make cache reservation, how to avoid route oscillation when content cache is updated and how to conduct the real-time latency measurement? In this work, we propose Latency Deterministic Information-Centric Networking (LD-ICN). LD-ICN relies on source routing-based latency telemetry and leverages an on-path caching technique to avoid frequent route oscillation while still achieve the optimal cache placement under the SDN architecture. Extensive evaluation shows that under LD-ICN, 90.04% of the content requests are satisfied within the hard latency requirements.
2020-11-16
Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B..  2019.  GEMˆ2-Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :842–853.
Blockchain technology has attracted much attention due to the great success of the cryptocurrencies. Owing to its immutability property and consensus protocol, blockchain offers a new solution for trusted storage and computation services. To scale up the services, prior research has suggested a hybrid storage architecture, where only small meta-data are stored onchain and the raw data are outsourced to off-chain storage. To protect data integrity, a cryptographic proof can be constructed online for queries over the data stored in the system. However, the previous schemes only support simple key-value queries. In this paper, we take the first step toward studying authenticated range queries in the hybrid-storage blockchain. The key challenge lies in how to design an authenticated data structure (ADS) that can be efficiently maintained by the blockchain, in which a unique gas cost model is employed. By analyzing the performance of the existing techniques, we propose a novel ADS, called GEM2-tree, which is not only gas-efficient but also effective in supporting authenticated queries. To further reduce the ADS maintenance cost without sacrificing much the query performance, we also propose an optimized structure, GEM2*-tree, by designing a two-level index structure. Theoretical analysis and empirical evaluation validate the performance of the proposed ADSs.
2020-11-04
Thomas, L. J., Balders, M., Countney, Z., Zhong, C., Yao, J., Xu, C..  2019.  Cybersecurity Education: From Beginners to Advanced Players in Cybersecurity Competitions. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :149—151.

Cybersecurity competitions have been shown to be an effective approach for promoting student engagement through active learning in cybersecurity. Players can gain hands-on experience in puzzle-based or capture-the-flag type tasks that promote learning. However, novice players with limited prior knowledge in cybersecurity usually found difficult to have a clue to solve a problem and get frustrated at the early stage. To enhance student engagement, it is important to study the experiences of novices to better understand their learning needs. To achieve this goal, we conducted a 4-month longitudinal case study which involves 11 undergraduate students participating in a college-level cybersecurity competition, National Cyber League (NCL) competition. The competition includes two individual games and one team game. Questionnaires and in-person interviews were conducted before and after each game to collect the players' feedback on their experience, learning challenges and needs, and information about their motivation, interests and confidence level. The collected data demonstrate that the primary concern going into these competitions stemmed from a lack of knowledge regarding cybersecurity concepts and tools. Players' interests and confidence can be increased by going through systematic training.

2019-03-25
Li, Y., Guan, Z., Xu, C..  2018.  Digital Image Self Restoration Based on Information Hiding. 2018 37th Chinese Control Conference (CCC). :4368–4372.
With the rapid development of computer networks, multimedia information is widely used, and the security of digital media has drawn much attention. The revised photo as a forensic evidence will distort the truth of the case badly tampered pictures on the social network can have a negative impact on the parties as well. In order to ensure the authenticity and integrity of digital media, self-recovery of digital images based on information hiding is studied in this paper. Jarvis half-tone change is used to compress the digital image and obtain the backup data, and then spread the backup data to generate the reference data. Hash algorithm aims at generating hash data by calling reference data and original data. Reference data and hash data together as a digital watermark scattered embedded in the digital image of the low-effective bits. When the image is maliciously tampered with, the hash bit is used to detect and locate the tampered area, and the image self-recovery is performed by extracting the reference data hidden in the whole image. In this paper, a thorough rebuild quality assessment of self-healing images is performed and better performance than the traditional DCT(Discrete Cosine Transform)quantization truncation approach is achieved. Regardless of the quality of the tampered content, a reference authentication system designed according to the principles presented in this paper allows higher-quality reconstruction to recover the original image with good quality even when the large area of the image is tampered.