Biblio
In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, intrusion detection systems (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.
The increased prevalence of attacks on Cyber-Physical Systems (CPS) as well as the safety-critical nature of these systems, has resulted in increased concerns regarding the security of CPS. In an effort towards the security of CPS, we consider the detection of attacks based on the fundamental notion of a system’s energy. We propose a discrete-time Energy-Based Attack Detection mech- anism for networked cyber-physical systems that are dissipative or passive in nature. We present analytical results to show that the de- tection mechanism is effective in detecting a class of attack models in networked control systems (NCS). Finally, using simulations we illustrate the effectiveness of the proposed approach in detecting attacks.
Distributed consensus protocols are an important class of distributed algorithms. Recently, an Adversarial Resilient Consensus Protocol (ARC-P) has been proposed which is capable to achieve consensus despite false information pro- vided by a limited number of malicious nodes. In order to withstand false information, this algorithm requires a mesh- like topology, so that multiple alternative information flow paths exist. However, these assumptions are not always valid. For instance, in Smart Grid, an emerging distributed CPS, the node connectivity is expected to resemble the scale free network topology. Especially closer to the end customer, in home and building area networks, the connectivity graph resembles a tree structure.
In this paper, we propose a Range-based Adversary Re- silient Consensus Protocol (R.ARC-P). Three aspects dis- tinguish R.ARC-P from its predecessor: This protocol op- erates on the tree topology, it distinguishes between trust- worthiness of nodes in the immediate neighborhood, and it uses a valid value range in order to reduce the number of nodes considered as outliers. R.ARC-P is capable of reach- ing global consensus among all genuine nodes in the tree if assumptions about maximal number of malicious nodes in the neighborhood hold. In the case that this assumption is wrong, it is still possible to reach Strong Partial Consensus, i.e., consensus between leafs of at least two different parents.
An important challenge in networked control systems is to ensure the confidentiality and integrity of the message in order to secure the communication and prevent attackers or intruders from compromising the system. However, security mechanisms may jeopardize the temporal behavior of the network data communication because of the computation and communication overhead. In this paper, we study the effect of adding Hash Based Message Authentication (HMAC) to a time-triggered networked control system. Time Triggered Architectures (TTAs) provide a deterministic and predictable timing behavior that is used to ensure safety, reliability and fault tolerance properties. The paper analyzes the computation and communication overhead of adding HMAC and the impact on the performance of the time-triggered network. Experimental validation and performance evaluation results using a TTEthernet network are also presented.
In this paper, we propose a scheme for a resilient distributed consensus problem through a set of trusted nodes within the network. Currently, algorithms that solve resilient consensus problem demand networks to have high connectivity to overrule the effects of adversaries, or require nodes to have access to some non-local information. In our scheme, we incorporate the notion of trusted nodes to guarantee distributed consensus despite any number of adversarial attacks, even in sparse networks. A subset of nodes, which are more secured against the attacks, constitute a set of trusted nodes. It is shown that the network becomes resilient against any number of attacks whenever the set of trusted nodes form a connected dominating set within the network. We also study a relationship between trusted nodes and the network robustness. Simulations are presented to illustrate and compare our scheme with the existing ones.
- « first
- ‹ previous
- 1
- 2
- 3