Biblio

Filters: Author is Xenofon Koutsoukos  [Clear All Filters]
2017-10-27
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Optimal Personalized Filtering Against Spear-Phishing Attacks. 29th AAAI Conference on Artificial Intelligence (AAAI).
To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties. In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than non-strategic thresholds.
Waseem Abbas, Sagal Bhatia, Xenofon Koutsoukos.  2015.  Guarding Networks Through Heterogeneous Mobile Guards. 2015 American Control Conference (ACC 2015).
(No abstract.)
Waseem Abbas, Lina Perelman, Saurabh Amin, Xenofon Koutsoukos.  2015.  An Efficient Approach to Fault Identification in Urban Water Networks Using Multi-Level Sensing. 2nd ACM International Conference on Embedded Systems for Energy Efficient Buildings (ACM BuildSys 2015).
(No abstract.)
Nika Haghtalab, Aron Laszka, Ariel Procaccia, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Monitoring Stealthy Diffusion. 15th IEEE International Conference on Data Mining (ICDM).
Starting with the seminal work by Kempe et al., a broad variety of problems, such as targeted marketing and the spread of viruses and malware, have been modeled as selecting a subset of nodes to maximize diffusion through a network. In cyber-security applications, however, a key consideration largely ignored in this literature is stealth. In particular, an attacker often has a specific target in mind, but succeeds only if the target is reached (e.g., by malware) before the malicious payload is detected and corresponding countermeasures deployed. The dual side of this problem is deployment of a limited number of monitoring units, such as cyber-forensics specialists, so as to limit the likelihood of such targeted and stealthy diffusion processes reaching their intended targets. We investigate the problem of optimal monitoring of targeted stealthy diffusion processes, and show that a number of natural variants of this problem are NP-hard to approximate. On the positive side, we show that if stealthy diffusion starts from randomly selected nodes, the defender's objective is submodular, and a fast greedy algorithm has provable approximation guarantees. In addition, we present approximation algorithms for the setting in which an attacker optimally responds to the placement of monitoring nodes by adaptively selecting the starting nodes for the diffusion process. Our experimental results show that the proposed algorithms are highly effective and scalable.
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Scheduling Intrusion Detection Systems in Resource-Bounded Cyber-Physical Systems. 1st ACM Workshop on Cyber-Physical Systems Security and Privacy, in conjunction with ACM CCS 2015 (CPS-SPC).

In order to be resilient to attacks, a cyber-physical system (CPS) must be able to detect attacks before they can cause significant damage. To achieve this, intrusion detection systems (IDS) may be deployed, which can detect attacks and alert human operators, who can then intervene. However, the resource-constrained nature of many CPS poses a challenge, since reliable IDS can be computationally expensive. Consequently, computational nodes may not be able to perform intrusion detection continuously, which means that we have to devise a schedule for performing intrusion detection. While a uniformly random schedule may be optimal in a purely cyber system, an optimal schedule for protecting CPS must also take into account the physical properties of the system, since the set of adversarial actions and their consequences depend on the physical systems. Here, in the context of water distribution networks, we study IDS scheduling problems in two settings and under the constraints on the available battery supplies. In the first problem, the objective is to design, for a given duration of time, scheduling schemes for IDS so that the probability of detecting an attack is maximized within that duration. We propose efficient heuristic algorithms for this general problem and evaluate them on various networks. In the second problem, our objective is to design scheduling schemes for IDS so that the overall lifetime of the network is maximized while ensuring that an intruder attack is always detected. Various strategies to deal with this problem are presented and evaluated for various networks.

2019-05-30
Emeka Eyisi, Xenofon Koutsoukos.  2014.  Energy-Based Attack Detection in Networked Control Systems. 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS 2014).

The increased prevalence of attacks on Cyber-Physical Systems (CPS) as well as the safety-critical nature of these systems, has resulted in increased concerns regarding the security of CPS. In an effort towards the security of CPS, we consider the detection of attacks based on the fundamental notion of a system’s energy. We propose a discrete-time Energy-Based Attack Detection mech- anism for networked cyber-physical systems that are dissipative or passive in nature. We present analytical results to show that the de- tection mechanism is effective in detecting a class of attack models in networked control systems (NCS). Finally, using simulations we illustrate the effectiveness of the proposed approach in detecting attacks.

Mark Yampolskiy, Yevgeniy Vorobeychik, Xenofon Koutsoukos, Peter Horvath, Heath LeBlanc, Janos Sztipanovits.  2014.  Resilient Distributed Consensus for Tree Topology. 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS 2014).

Distributed consensus protocols are an important class of distributed algorithms. Recently, an Adversarial Resilient Consensus Protocol (ARC-P) has been proposed which is capable to achieve consensus despite false information pro- vided by a limited number of malicious nodes. In order to withstand false information, this algorithm requires a mesh- like topology, so that multiple alternative information flow paths exist. However, these assumptions are not always valid. For instance, in Smart Grid, an emerging distributed CPS, the node connectivity is expected to resemble the scale free network topology. Especially closer to the end customer, in home and building area networks, the connectivity graph resembles a tree structure.

In this paper, we propose a Range-based Adversary Re- silient Consensus Protocol (R.ARC-P). Three aspects dis- tinguish R.ARC-P from its predecessor: This protocol op- erates on the tree topology, it distinguishes between trust- worthiness of nodes in the immediate neighborhood, and it uses a valid value range in order to reduce the number of nodes considered as outliers. R.ARC-P is capable of reach- ing global consensus among all genuine nodes in the tree if assumptions about maximal number of malicious nodes in the neighborhood hold. In the case that this assumption is wrong, it is still possible to reach Strong Partial Consensus, i.e., consensus between leafs of at least two different parents.

2019-05-31
Goncalo Martins, Anirban Bhattacharjee, Abhishek Dubey, Xenofon Koutsoukos.  2014.  Performance evaluation of an authentication mechanism in time-triggered networked control systems. 7th International Symposium on Resilient Control Systems (ISRCS). :1-6.

An important challenge in networked control systems is to ensure the confidentiality and integrity of the message in order to secure the communication and prevent attackers or intruders from compromising the system. However, security mechanisms may jeopardize the temporal behavior of the network data communication because of the computation and communication overhead. In this paper, we study the effect of adding Hash Based Message Authentication (HMAC) to a time-triggered networked control system. Time Triggered Architectures (TTAs) provide a deterministic and predictable timing behavior that is used to ensure safety, reliability and fault tolerance properties. The paper analyzes the computation and communication overhead of adding HMAC and the impact on the performance of the time-triggered network. Experimental validation and performance evaluation results using a TTEthernet network are also presented.

2019-05-30
Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2014.  Resilient consensus protocol in the presence of trusted nodes. 7th International Symposium on Resilient Control Systems (ISRCS). :1-7.

In this paper, we propose a scheme for a resilient distributed consensus problem through a set of trusted nodes within the network. Currently, algorithms that solve resilient consensus problem demand networks to have high connectivity to overrule the effects of adversaries, or require nodes to have access to some non-local information. In our scheme, we incorporate the notion of trusted nodes to guarantee distributed consensus despite any number of adversarial attacks, even in sparse networks. A subset of nodes, which are more secured against the attacks, constitute a set of trusted nodes. It is shown that the network becomes resilient against any number of attacks whenever the set of trusted nodes form a connected dominating set within the network. We also study a relationship between trusted nodes and the network robustness. Simulations are presented to illustrate and compare our scheme with the existing ones.