Biblio

Filters: Author is Xenofon Koutsoukos  [Clear All Filters]
2019-05-30
Saqib Hasan, Amin Ghafouri, Abhishek Dubey, Gabor Karsai, Xenofon Koutsoukos.  2017.  Heuristics-Based Approach for Identifying Critical N - k Contingencies in Power Systems. 2017 Resilience Week (RWS).

Reliable operation of electrical power systems in the presence of multiple critical N − k contingencies is an important challenge for the system operators. Identifying all the possible N − k critical contingencies to design effective mitigation strategies is computationally infeasible due to the combinatorial explosion of the search space. This paper describes two heuristic algorithms based on the iterative pruning of the candidate contingency set to effectively and efficiently identify all the critical N − k contingencies resulting in system failure. These algorithms are applied to the standard IEEE-14 bus system, IEEE-39 bus system, and IEEE-57 bus system to identify multiple critical N − k contingencies. The algorithms are able to capture all the possible critical N − k contingencies (where 1 ≤ k ≤ 9) without missing any dangerous contingency.

2017-10-27
Heath LeBlanc, Xenofon Koutsoukos.  2017.  Resilient Consensus and Synchronization of Networked Multi-Agent Systems. IEEE Transactions on Control of Networked Systems.

(No abstract.)

(Conditionally accepted)

Waseem Abbas, Aron Laszka, Xenofon Koutsoukos.  2017.  Graph-Theoretic Approach for Increasing Participation in Social Sensing. 2nd International Workshop on Social Sensing (SocialSens 2017).
Participatory sensing enables individuals, each with limited sensing capability, to share measurements and contribute towards developing a complete knowledge of their environment. The success of a participatory sensing application is often measured in terms of the number of users participating. In most cases, an individual’s eagerness to participate depends on the group of users who already participate. For instance, when users share data with their peers in a social network, the engagement of an individual depends on its peers. Such engagement rules have been studied in the context of social networks using the concept of k-core, which assumes that participation is determined solely by network topology. However, in participatory sensing, engagement rules must also consider user heterogeneity, such as differences in sensing capabilities and physical location. To account for heterogeneity, we introduce the concept of (r,s)-core to model the set of participating users. We formulate the problem of maximizing the size of the (r,s)-core using 1) anchor users, who are incentivized to participate regardless of their peers, and by 2) assigning capabilities to users. Since these problems are computationally challenging, we study heuristic algorithms for solving them. Based on real-world social networks as well as random graphs, we provide numerical results showing significant improvement compared to random selection of anchor nodes and label assignments.
Amin Ghafouri, Aron Laszka, Abhishek Dubey, Xenofon Koutsoukos.  2017.  Optimal Detection of Fault Traffic Sensors Used in Route Planning. 2nd International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE).

In a smart city, real-time traffic sensors may be deployed for various applications, such as route planning. Unfortunately, sensors are prone to failures, which result in erroneous traffic data. Erroneous data can adversely affect applications such as route planning, and can cause increased travel time and environmental impact. To minimize the impact of sensor failures, we must detect them promptly and with high accuracy. However, typical detection algorithms may lead to a large number of false positives (i.e., false alarms) and false negatives (i.e., missed detections), which can result in suboptimal route planning. In this paper, we devise an effective detector for identifying faulty traffic sensors using a prediction model based on Gaussian Processes. Further, we present an approach for computing the optimal parameters of the detector which minimize losses due to falsepositive and false-negative errors. We also characterize critical sensors, whose failure can have high impact on the route planning application. Finally, we implement our method and evaluate it numerically using a real-world dataset and the route planning platform OpenTripPlanner.

Lina Sela Perelman, Waseem Abbas, Saurabh Amin, Xenofon Koutsoukos.  2017.  Resilient Sensor Placement for Fault Localization in Water Distribution Networks. 8th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2017).

In this paper, we study the sensor placement problem in urban water networks that maximizes the localization of pipe failures given that some sensors give incorrect outputs. False output of a sensor might be the result of degradation in sensor's hardware, software fault, or might be due to a cyber-attack on the sensor. Incorrect outputs from such sensors can have any possible values which could lead to an inaccurate localization of a failure event. We formulate the optimal sensor placement problem with erroneous sensors as a set multicover problem, which is NP-hard, and then discuss a polynomial time heuristic to obtain efficient solutions. In this direction, we first examine the physical model of the disturbance propagating in the network as a result of a failure event, and outline the multi-level sensing model that captures several event features. Second, using a combinatorial approach, we solve the problem of sensor placement that maximizes the localization of pipe failures by selecting $m$ sensors out of which at most $e$ give incorrect outputs. We propose various localization performance metrics, and numerically evaluate our approach on a benchmark and a real water distribution network. Finally, using computational experiments, we study relationships between design parameters such as the total number of sensors, the number of sensors with errors, and extracted signal features.

Aron Laszka, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Synergic Security for Smart Water Networks: Redundancy, Diversity, and Hardening. 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater 2017).
Smart water networks can provide great benefits to our society in terms of efficiency and sustainability. However, smart capabilities and connectivity also expose these systems to a wide range of cyber attacks, which enable cyber-terrorists and hostile nation states to mount cyber-physical attacks. Cyber-physical attacks against critical infrastructure, such as water treatment and distribution systems, pose a serious threat to public safety and health. Consequently, it is imperative that we improve the resilience of smart water networks. We consider three approaches for improving resilience: redundancy, diversity, and hardening. Even though each one of these “canonical” approaches has been thoroughly studied in prior work, a unified theory on how to combine them in the most efficient way has not yet been established. In this paper, we address this problem by studying the synergy of these approaches in the context of protecting smart water networks from cyber-physical contamination attacks.
Nika Haghtalab, Aron Laszka, Ariel Procaccia, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Monitoring Stealthy Diffusion. Knowledge and Information Systems.
(No abstract.)
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  A game-theoretic approach for integrity assurance in resource-bounded systems. International Journal of Information Security.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyberphysical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause significant physical or financial harm. To bridge the gap between such binary decisions, we propose a stochastic message authentication approach that can explicitly trade computational cost off for security. We introduce a formal game-theoretic framework for optimal stochastic message authentication, providing provable guarantees for resource-bounded systems based on an existing message authentication scheme. We use our framework to investigate attacker deterrence, as well as optimal stochastic message authentication when deterrence is impossible, in both short-term and long-term equilibria. Additionally, we propose two schemes for implementing stochastic message authentication in practice, one for saving computation only at the receiver and one for saving computation at both ends, and demonstrate the associated computational savings using an actual implementation.

Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

2019-05-31
Bradley Potteiger, William Emfinger, Himanshu Neema, Xenofon Koutsoukos, CheeYee Tang, Keith Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. Resilience Week (RWS). :177-183.

Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.

2017-10-27
Goncalo Martins, Arul Moondra, Abhishek Dubey, Xenofon Koutsoukos.  2016.  Computation and Communication Evaluation of an Authentication Mechanism for Time-Triggered Networked Control Systems. Sensors. 16

In modern networked control applications, confidentiality and integrity are important features to address in order to prevent against attacks. Moreover, network control systems are a fundamental part of the communication components of current cyber-physical systems (e.g., automotive communications). Many networked control systems employ Time-Triggered (TT) architectures that provide mechanisms enabling the exchange of precise and synchronous messages. TT systems have computation and communication constraints, and with the aim to enable secure communications in the network, it is important to evaluate the computational and communication overhead of implementing secure communication mechanisms. This paper presents a comprehensive analysis and evaluation of the effects of adding a Hash-based Message Authentication (HMAC) to TT networked control systems. The contributions of the paper include (1) the analysis and experimental validation of the communication overhead, as well as a scalability analysis that utilizes the experimental result for both wired and wireless platforms and (2) an experimental evaluation of the computational overhead of HMAC based on a kernel-level Linux implementation. An automotive application is used as an example, and the results show that it is feasible to implement a secure communication mechanism without interfering with the existing automotive controller execution times. The methods and results of the paper can be used for evaluating the performance impact of security mechanisms and, thus, for the design of secure wired and wireless TT networked control systems.

(Special Issue on Real-Time and Cyber-Physical Systems)

Aron Laszka, Waseem Abbas, Shankar Sastry, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Intrusion Detection Systems. 3rd Annual Symposium and Bootcamp on the Science of Security (HotSoS).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple interdependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Bradley Potteiger, Gonzalo Martins, Xenofon Koutsoukos.  2016.  Software and Attack Centric Integrated Threat Modeling for Quantitative Risk Assessment. 2016 Symposium and Bootcamp on the Science of Security (HotSoS'16).

(No abstract.)

Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.

2016-04-11
Aron Laszka, Bradley Potteiger, Yevgeniy Vorobeychik, Saurabh Amin, Xenofon Koutsoukos.  2016.  Vulnerability of Transportation Networks to Traffic-Signal Tampering. 7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.

2017-10-27
Amin Ghafouri, Waseem Abbas, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Vulnerability of Fixed-Time Control of Signalized Intersections to Cyber-Tampering. 9th International Symposium on Resilient Control Systems.

— Recent experimental studies have shown that traf- fic management systems are vulnerable to cyber-attacks on sensor data. This paper studies the vulnerability of fixedtime control of signalized intersections when sensors measuring traffic flow information are compromised and perturbed by an adversary. The problems are formulated by considering three malicious objectives: 1) worst-case network accumulation, which aims to destabilize the overall network as much as possible; 2) worst-case lane accumulation, which aims to cause worstcase accumulation on some target lanes; and 3) risk-averse target accumulation, which aims to reach a target accumulation by making the minimum perturbation to sensor data. The problems are solved using bilevel programming optimization methods. Finally, a case study of a real network is used to illustrate the results.

Amin Ghafouri, Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2016.  Optimal Thresholds for Anomaly-Based Intrusion Detection in Dynamical Environments. 2016 Conference on Decision and Game Theory for Security (GameSec 2016).

In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple inter-dependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.

Lina Sela, Waseem Abbas, Xenofon Koutsoukos, Saurabh Amin.  2016.  Sensor placement for fault location identification in water networks: a minimum test cover approach. Automatica. 72
This paper focuses on the optimal sensor placement problem for the identification of pipe failure locations in large-scale urban water systems. The problem involves selecting the minimum number of sensors such that every pipe failure can be uniquely localized. This problem can be viewed as a minimum test cover (MTC) problem, which is NP-hard. We consider two approaches to obtain approximate solutions to this problem. In the first approach, we transform the MTC problem to a minimum set cover (MSC) problem and use the greedy algorithm that exploits the submodularity property of the MSC problem to compute the solution to the MTC problem. In the second approach, we develop a new augmented greedy algorithm for solving the MTC problem. This approach does not require the transformation of the MTC to MSC. Our augmented greedy algorithm provides in a significant computational improvement while guaranteeing the same approximation ratio as the first approach. We propose several metrics to evaluate the performance of the sensor placement designs. Finally, we present detailed computational experiments for a number of real water distribution networks.
Waseem Abbas, Lina Sela, Saurabh Amin, Xenofon Koutsoukos.  2015.  An Efficient Approach to Fault Identification in Urban Water Networks Using Multi-Level Sensing. BuildSys '15 Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. :147-156.
The objective of this work is to develop an efficient and practical sensor placement method for the failure detection and localization in water networks. We formulate the problem as the minimum test cover problem (MTC) with the objective of selecting the minimum number of sensors required to uniquely identify and localize pipe failure events. First, we summarize a single-level sensing model and discuss an efficient fast greedy approach for solving the MTC problem. Simulation results on benchmark test networks demonstrate the efficacy of the fast greedy algorithm. Second, we develop a multi-level sensing model that captures additional physical features of the disturbance event, such as the time lapsed between the occurrence of disturbance and its detection by the sensor. Our sensor placement approach using MTC extends to the multi-level sensing model and an improved identification performance is obtained via reduced number of sensors (in comparison to single-level sensing model). In particular, we investigate the bi-level sensing model to illustrate the efficacy of employing multi-level sensors for the identification of failure events. Finally, we suggest extensions of our approach for the deployment of heterogeneous sensors in water networks by exploring the trade-off between cost and performance (measured in terms of the identification score of pipe/link failures).
2019-05-30
Goncalo Martins, Sajal Bhatia, Xenofon Koutsoukos, Keith Stouffer, CheeYee Tang, Richard Candell.  2015.  Towards a Systematic Threat Modeling Approach for Cyber-physical Systems. 3rd International Symposium on Resilient Cyber Systems. 2015

Cyber-Physical Systems (CPS) are systems with seamless integration of physical, computational and networking components. These systems can potentially have an impact on the physical components, hence it is critical to safeguard them against a wide range of attacks. In this paper, it is argued that an effective approach to achieve this goal is to systematically identify the potential threats at the design phase of building such systems, commonly achieved via threat modeling. In this context, a tool to perform systematic analysis of threat modeling for CPS is proposed. A real-world wireless railway temperature monitoring system is used as a case study to validate the proposed approach. The threats identified in the system are subsequently mitigated using National Institute of Standards and Technology (NIST) standards.

2017-10-27
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Integrity Assurance in Resource-Bounded Systems through Stochastic Message Authentication. 2nd Annual Symposium and Bootcamp on the Science of Security (HotSoS).
Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause significant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Resilient Observation Selection in Adversarial Settings. 54th IEEE Conference on Decision and Control (CDC).

Monitoring large areas using sensors is fundamental in a number of applications, including electric power grid, traffic networks, and sensor-based pollution control systems. However, the number of sensors that can be deployed is often limited by financial or technological constraints. This problem is further complicated by the presence of strategic adversaries, who may disable some of the deployed sensors in order to impair the operator's ability to make predictions. Assuming that the operator employs a Gaussian-process-based regression model, we formulate the problem of attack-resilient sensor placement as the problem of selecting a subset from a set of possible observations, with the goal of minimizing the uncertainty of predictions. We show that both finding an optimal resilient subset and finding an optimal attack against a given subset are NP-hard problems. Since both the design and the attack problems are computationally complex, we propose efficient heuristic algorithms for solving them and present theoretical approximability results. Finally, we show that the proposed algorithms perform exceptionally well in practice using numerical results based on real-world datasets.

2016-04-07
Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2015.  Resilient Observation Selection in Adversarial Settings. 54th IEEE Conference on Decision and Control (CDC).

Monitoring large areas using sensors is fundamental in a number of applications, including electric power grid, traffic networks, and sensor-based pollution control systems. However, the number of sensors that can be deployed is often limited by financial or technological constraints. This problem is further complicated by the presence of strategic adversaries, who may disable some of the deployed sensors in order to impair the operator's ability to make predictions. Assuming that the operator employs a Gaussian-process-based regression model, we formulate the problem of attack-resilient sensor placement as the problem of selecting a subset from a set of possible observations, with the goal of minimizing the uncertainty of predictions. We show that both finding an optimal resilient subset and finding an optimal attack against a given subset are NP-hard problems. Since both the design and the attack problems are computationally complex, we propose efficient heuristic algorithms for solving them and present theoretical approximability results. Finally, we show that the proposed algorithms perform exceptionally well in practice using numerical results based on real-world datasets.

2019-05-30
Mark Yampolskiy, Peter Horvath, Xenofon Koutsoukos, Yuan Xue, Janos Sztipanovits.  2015.  A language for describing attacks on cyber-physical systems. International Journal of Critical Infrastructure Protection. 8:40-52.

The security of cyber-physical systems is of paramount importance because of their pervasiveness in the critical infrastructure. Protecting cyber-physical systems greatly depends on a deep understanding of the possible attacks and their properties. The prerequisite for quantitative and qualitative analyses of attacks is a knowledge base containing attack descriptions. The structure of the attack descriptions is the indispensable foundation of the knowledge base.

This paper introduces the Cyber-Physical Attack Description Language (CP-ADL), which lays a cornerstone for the structured description of attacks on cyber-physical systems. The core of the language is a taxonomy of attacks on cyber-physical systems. The taxonomy specifies the semantically distinct aspects of attacks on cyber-physical systems that should be described. CP-ADL extends the taxonomy with the means to describe relationships between semantically distinct aspects, despite the complex relationships that exist for attacks on cyber-physical systems. The language is capable of expressing relationships between attack descriptions, including the links between attack steps and the folding of attack details.