Biblio

Found 482 results

Filters: Keyword is Intrusion detection  [Clear All Filters]
2022-01-10
Allagi, Shridhar, Rachh, Rashmi, Anami, Basavaraj.  2021.  A Robust Support Vector Machine Based Auto-Encoder for DoS Attacks Identification in Computer Networks. 2021 International Conference on Intelligent Technologies (CONIT). :1–6.
An unprecedented upsurge in the number of cyberattacks and threats is the corollary of ubiquitous internet connectivity. Among a variety of threats and attacks, Denial of Service (DoS) attacks are crucial and conventional mechanisms currently being used for detection/ identification of these attacks are not adequate. The use of real-time and robust mechanisms is the way to handle this. Machine learning-based techniques have been extensively used for this in the recent past. In this paper, a robust mechanism using Support Vector Machine Based Auto-Encoder is proposed for identifying DoS attacks. The proposed technique is tested on the CICIDS dataset and has given 99.32 % accuracy for DoS attacks. To study the effect of the number of features on the performance of the technique, a discriminant component analysis is deployed for feature reduction and independent experiments, namely SVM with 25 features, SVM with 30 features, SVM with 35 features, and PCA-SVM with 25 features, are conducted. From the experiments, it is observed that AE-SVM has performed better than others.
2022-06-09
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-02-04
Roy, Vishwajit, Noureen, Subrina Sultana, Atique, Sharif, Bayne, Stephen, Giesselmann, Michael.  2021.  Intrusion Detection from Synchrophasor Data propagation using Cyber Physical Platform. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–5.
Some of the recent reports show that Power Grid is a target of attack and gradually the need for understanding the security of Grid network is getting a prime focus. The Department of Homeland Security has imposed focus on Cyber Threats on Power Grid in their "Cyber Security Strategy,2018" [1] . DHS has focused on innovations to manage risk attacks on Power System based national resources. Power Grid is a cyber physical system which consists of power flow and data transmission. The important part of a microgrid is the two-way power flow which makes the system complex on monitoring and control. In this paper, we have tried to study different types of attacks which change the data propagation of Synchrophasor, network communication interruption behavior and find the data propagation scenario due to attack. The focus of the paper is to develop a platform for Synchrophasor based data network attack study which is a part of Microgrid design. Different types of intrusion models were studied to observe change in Synchrophasor data pattern which will help for further prediction to improve Microgrid resiliency for different types of cyber-attack.
2022-04-01
Edzereiq Kamarudin, Imran, Faizal Ab Razak, Mohd, Firdaus, Ahmad, Izham Jaya, M., Ti Dun, Yau.  2021.  Performance Analysis on Denial of Service attack using UNSW-NB15 Dataset. 2021 International Conference on Software Engineering Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :423–426.
With the advancement of network technology, users can now easily gain access to and benefit from networks. However, the number of network violations is increasing. The main issue with this violation is that irresponsible individuals are infiltrating the network. Network intrusion can be interpreted in a variety of ways, including cyber criminals forcibly attempting to disrupt network connections, gaining unauthorized access to valuable data, and then stealing, corrupting, or destroying the data. There are already numerous systems in place to detect network intrusion. However, the systems continue to fall short in detecting and counter-attacking network intrusion attacks. This research aims to enhance the detection of Denial of service (DoS) by identifying significant features and identifying abnormal network activities more accurately. To accomplish this goal, the study proposes an Intrusion Analysis System for detecting Denial of service (DoS) network attacks using machine learning. The accuracy rate of the proposed method using random forest was demonstrated in our experimental results. It was discovered that the accuracy rate with each dataset is greater than 98.8 percent when compared to traditional approaches. Furthermore, when features are selected, the detection time is significantly reduced.
2022-08-26
Ricks, Brian, Tague, Patrick, Thuraisingham, Bhavani.  2021.  DDoS-as-a-Smokescreen: Leveraging Netflow Concurrency and Segmentation for Faster Detection. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :217—224.
In the ever evolving Internet threat landscape, Distributed Denial-of-Service (DDoS) attacks remain a popular means to invoke service disruption. DDoS attacks, however, have evolved to become a tool of deceit, providing a smokescreen or distraction while some other underlying attack takes place, such as data exfiltration. Knowing the intent of a DDoS, and detecting underlying attacks which may be present concurrently with it, is a challenging problem. An entity whose network is under a DDoS attack may not have the support personnel to both actively fight a DDoS and try to mitigate underlying attacks. Therefore, any system that can detect such underlying attacks should do so only with a high degree of confidence. Previous work utilizing flow aggregation techniques with multi-class anomaly detection showed promise in both DDoS detection and detecting underlying attacks ongoing during an active DDoS attack. In this work, we head in the opposite direction, utilizing flow segmentation and concurrent flow feature aggregation, with the primary goal of greatly reduced detection times of both DDoS and underlying attacks. Using the same multi-class anomaly detection approach, we show greatly improved detection times with promising detection performance.
2022-06-14
Hancock, John, Khoshgoftaar, Taghi M., Leevy, Joffrey L..  2021.  Detecting SSH and FTP Brute Force Attacks in Big Data. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :760–765.
We present a simple approach for detecting brute force attacks in the CSE-CIC-IDS2018 Big Data dataset. We show our approach is preferable to more complex approaches since it is simpler, and yields stronger classification performance. Our contribution is to show that it is possible to train and test simple Decision Tree models with two independent variables to classify CSE-CIC-IDS2018 data with better results than reported in previous research, where more complex Deep Learning models are employed. Moreover, we show that Decision Tree models trained on data with two independent variables perform similarly to Decision Tree models trained on a larger number independent variables. Our experiments reveal that simple models, with AUC and AUPRC scores greater than 0.99, are capable of detecting brute force attacks in CSE-CIC-IDS2018. To the best of our knowledge, these are the strongest performance metrics published for the machine learning task of detecting these types of attacks. Furthermore, the simplicity of our approach, combined with its strong performance, makes it an appealing technique.
Zuech, Richard, Hancock, John, Khoshgoftaar, Taghi M..  2021.  Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :30–37.
We introduce the novel concept of feature popularity with three different web attacks and big data from the CSE-CIC-IDS2018 dataset: Brute Force, SQL Injection, and XSS web attacks. Feature popularity is based upon ensemble Feature Selection Techniques (FSTs) and allows us to more easily understand common important features between different cyberattacks, for two main reasons. First, feature popularity lists can be generated to provide an easy comprehension of important features across different attacks. Second, the Jaccard similarity metric can provide a quantitative score for how similar feature subsets are between different attacks. Both of these approaches not only provide more explainable and easier-to-understand models, but they can also reduce the complexity of implementing models in real-world systems. Four supervised learning-based FSTs are used to generate feature subsets for each of our three different web attack datasets, and then our feature popularity frameworks are applied. For these three web attacks, the XSS and SQL Injection feature subsets are the most similar per the Jaccard similarity. The most popular features across all three web attacks are: Flow\_Bytes\_s, FlowİAT\_Max, and Flow\_Packets\_s. While this introductory study is only a simple example using only three web attacks, this feature popularity concept can be easily extended, allowing an automated framework to more easily determine the most popular features across a very large number of attacks and features.
2022-04-13
Govindaraj, Logeswari, Sundan, Bose, Thangasamy, Anitha.  2021.  An Intrusion Detection and Prevention System for DDoS Attacks using a 2-Player Bayesian Game Theoretic Approach. 2021 4th International Conference on Computing and Communications Technologies (ICCCT). :319—324.

Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.

2022-03-01
Leevy, Joffrey L., Hancock, John, Khoshgoftaar, Taghi M., Seliya, Naeem.  2021.  IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC). :41–49.
The exponential increase in the use of Internet of Things (IoT) devices has been accompanied by a spike in cyberattacks on IoT networks. In this research, we investigate the Bot-IoT dataset with a focus on classifying IoT reconnaissance attacks. Reconnaissance attacks are a foundational step in the cyberattack lifecycle. Our contribution is centered on the building of predictive models with the aid of Random Undersampling (RUS) and ensemble Feature Selection Techniques (FSTs). As far as we are aware, this type of experimentation has never been performed for the Reconnaissance attack category of Bot-IoT. Our work uses the Area Under the Receiver Operating Characteristic Curve (AUC) metric to quantify the performance of a diverse range of classifiers: Light GBM, CatBoost, XGBoost, Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), and a Multilayer Perceptron (MLP). For this study, we determined that the best learners are DT and DT-based ensemble classifiers, the best RUS ratio is 1:1 or 1:3, and the best ensemble FST is our ``6 Agree'' technique.
2022-04-19
Tanakas, Petros, Ilias, Aristidis, Polemi, Nineta.  2021.  A Novel System for Detecting and Preventing SQL Injection and Cross-Site-Script. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–6.
SQL Injection and Cross-Site Scripting are the two most common attacks in database-based web applications. In this paper we propose a system to detect different types of SQL injection and XSS attacks associated with a web application, without the existence of any firewall, while significantly reducing the network overhead. We use properly modifications of the Nginx Reverse Proxy protocols and Suricata NIDS/ IPS rules. Pure work has been done from other researchers based on the capabilities of Nginx and Suricata and our approach with the experimental results provided in the paper demonstrate the efficiency of our system.
2022-02-07
Abbood, Zainab Ali, Atilla, Doğu Çağdaş, Aydin, Çağatay, Mahmoud, Mahmoud Shuker.  2021.  A Survey on Intrusion Detection System in Ad Hoc Networks Based on Machine Learning. 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI). :1–8.
This advanced research survey aims to perform intrusion detection and routing in ad hoc networks in wireless MANET networks using machine learning techniques. The MANETs are composed of several ad-hoc nodes that are randomly or deterministically distributed for communication and acquisition and to forward the data to the gateway for enhanced communication securely. MANETs are used in many applications such as in health care for communication; in utilities such as industries to monitor equipment and detect any malfunction during regular production activity. In general, MANETs take measurements of the desired application and send this information to a gateway, whereby the user can interpret the information to achieve the desired purpose. The main importance of MANETs in intrusion detection is that they can be trained to detect intrusion and real-time attacks in the CIC-IDS 2019 dataset. MANETs routing protocols are designed to establish routes between the source and destination nodes. What these routing protocols do is that they decompose the network into more manageable pieces and provide ways of sharing information among its neighbors first and then throughout the whole network. The landscape of exciting libraries and techniques is constantly evolving, and so are the possibilities and options for experiments. Implementing the framework in python helps in reducing syntactic complexity, increases performance compared to implementations in scripting languages, and provides memory safety.
2022-03-01
ZHU, Guowei, YUAN, Hui, ZHUANG, Yan, GUO, Yue, ZHANG, Xianfei, QIU, Shuang.  2021.  Research on Network Intrusion Detection Method of Power System Based on Random Forest Algorithm. 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :374–379.
Aiming at the problem of low detection accuracy in traditional power system network intrusion detection methods, in order to improve the performance of power system network intrusion detection, a power system network intrusion detection method based on random forest algorithm is proposed. Firstly, the power system network intrusion sub sample is selected to construct the random forest decision tree. The random forest model is optimized by using the edge function. The accuracy of the vector is judged by the minimum state vector of the power system network, and the measurement residual of the power system network attack is calculated. Finally, the power system network intrusion data set is clustered by Gaussian mixture clustering Through the design of power system network intrusion detection process, the power system network intrusion detection is realized. The experimental results show that the power system network intrusion detection method based on random forest algorithm has high network intrusion detection performance.
2022-05-05
Liang, Haolan, Ye, Chunxiao, Zhou, Yuangao, Yang, Hongzhao.  2021.  Anomaly Detection Based on Edge Computing Framework for AMI. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :385—390.
Aiming at the cyber security problem of the advanced metering infrastructure(AMI), an anomaly detection method based on edge computing framework for the AMI is proposed. Due to the characteristics of the edge node of data concentrator, the data concentrator has the capability of computing a large amount of data. In this paper, distributing the intrusion detection model on the edge node data concentrator of the AMI instead of the metering center, meanwhile, two-way communication of distributed local model parameters replaces a large amount of data transmission. The proposed method avoids the risk of privacy leakage during the communication of data in AMI, and it greatly reduces communication delay and computational time. In this paper, KDDCUP99 datasets is used to verify the effectiveness of the method. The results show that compared with Deep Convolutional Neural Network (DCNN), the detection accuracy of the proposed method reach 99.05%, and false detection rate only gets 0.74%, and the results indicts the proposed method ensures a high detection performance with less communication rounds, it also reduces computational consumption.
2022-09-16
Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-06-09
Hu, Peng, Yang, Baihua, Wang, Dong, Wang, Qile, Meng, Kaifeng, Wang, Yinsheng, Chen, Zhen.  2021.  Research on Cybersecurity Strategy and Key Technology of the Wind Farms’ Industrial Control System. 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). :357–361.
Affected by the inherent ideas like "Focus on Function Realization, Despise Security Protection", there are lots of hidden threats in the industrial control system of wind farms (ICS-WF), such as unreasonable IP configuration, failure in virus detection and killing, which are prone to illegal invasion and attack from the cyberspace. Those unexpected unauthorized accesses are quite harmful for the stable operation of the wind farms and regional power grid. Therefore, by investigating the current security situation and needs of ICS-WF, analyzing the characteristics of ICS-WF’s architecture and internal communication, and integrating the ideas of the classified protection of cybersecurity, this paper proposes a new customized cybersecurity strategy for ICS-WF based on the barrel theory. We also introduce an new anomalous intrusion detection technology for ICS-WF, which is developed based on statistical models of wind farm network characteristics. Finally, combined all these work with the network security offense and defense drill in the industrial control safety simulation laboratory of wind farms, this research formulates a three-dimensional comprehensive protection solution for ICS-WF, which significantly improves the cybersecurity level of ICS-WF.
2022-01-10
Bardhan, Shuvo, Battou, Abdella.  2021.  Security Metric for Networks with Intrusion Detection Systems having Time Latency using Attack Graphs. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1107–1113.
Probabilistic security metrics estimate the vulnerability of a network in terms of the likelihood of an attacker reaching the goal states (of a network) by exploiting the attack graph paths. The probability computation depends upon several assumptions regarding the possible attack scenarios. In this paper, we extend the existing security metric to model networks with intrusion detection systems and their associated uncertainties and time latencies. We consider learning capabilities of attackers as well as detection systems. Estimation of risk is obtained by using the attack paths that are undetectable owing to the latency of the detection system. Thus, we define the overall vulnerability (of a network) as a function of the time window available to an attacker for repeated exploring (via learning) and exploitation of a network, before the attack is mitigated by the detection system. Finally, we consider the realistic scenario where an attacker explores and abandons various partial paths in the attack graph before the actual exploitation. A dynamic programming formulation of the vulnerability computation methodology is proposed for this scenario. The nature of these metrics are explained using a case study showing the vulnerability spectrum from the case of zero detection latency to a no detection scenario.
2022-01-25
Hughes, Kieran, McLaughlin, Kieran, Sezer, Sakir.  2021.  Towards Intrusion Response Intel. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :337—342.
Threat Intelligence has been a key part of the success of Intrusion Detection, with several trusted sources leading to wide adoption and greater understanding of new and trending threats to computer networks. Identifying potential threats and live attacks on networks is only half the battle, knowing how to correctly respond to these threats and attacks requires in-depth and domain specific knowledge, which may be unique to subject experts and software vendors. Network Incident Responders and Intrusion Response Systems can benefit from a similar approach to Threat Intel, with a focus on potential Response actions. A qualitative comparison of current Threat Intel Sources and prominent Intrusion Response Systems is carried out to aid in the identification of key requirements to be met to enable the adoption of Response Intel. Building on these requirements, a template for Response Intel is proposed which incorporates standardised models developed by MITRE. Similarly, to facilitate the automated use of Response Intel, a structure for automated Response Actions is proposed.
2022-03-14
Ouyang, Yuankai, Li, Beibei, Kong, Qinglei, Song, Han, Li, Tao.  2021.  FS-IDS: A Novel Few-Shot Learning Based Intrusion Detection System for SCADA Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.

2022-04-13
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.
2022-10-20
Boukela, Lynda, Zhang, Gongxuan, Yacoub, Meziane, Bouzefrane, Samia.  2021.  A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :374—379.
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained.
2022-11-18
Dubasi, Yatish, Khan, Ammar, Li, Qinghua, Mantooth, Alan.  2021.  Security Vulnerability and Mitigation in Photovoltaic Systems. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :1—7.
Software and firmware vulnerabilities pose security threats to photovoltaic (PV) systems. When patches are not available or cannot be timely applied to fix vulnerabilities, it is important to mitigate vulnerabilities such that they cannot be exploited by attackers or their impacts will be limited when exploited. However, the vulnerability mitigation problem for PV systems has received little attention. This paper analyzes known security vulnerabilities in PV systems, proposes a multi-level mitigation framework and various mitigation strategies including neural network-based attack detection inside inverters, and develops a prototype system as a proof-of-concept for building vulnerability mitigation into PV system design.
2022-03-01
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.
Zhao, Ruijie, Li, Zhaojie, Xue, Zhi, Ohtsuki, Tomoaki, Gui, Guan.  2021.  A Novel Approach Based on Lightweight Deep Neural Network for Network Intrusion Detection. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
With the ubiquitous network applications and the continuous development of network attack technology, all social circles have paid close attention to the cyberspace security. Intrusion detection systems (IDS) plays a very important role in ensuring computer and communication systems security. Recently, deep learning has achieved a great success in the field of intrusion detection. However, the high computational complexity poses a major hurdle for the practical deployment of DL-based models. In this paper, we propose a novel approach based on a lightweight deep neural network (LNN) for IDS. We design a lightweight unit that can fully extract data features while reducing the computational burden by expanding and compressing feature maps. In addition, we use inverse residual structure and channel shuffle operation to achieve more effective training. Experiment results show that our proposed model for intrusion detection not only reduces the computational cost by 61.99% and the model size by 58.84%, but also achieves satisfactory accuracy and detection rate.