Biblio
In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.
Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.
Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.