Biblio
While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.
Supervisory Control and Data Acquisition (SCADA) systems have been a frequent target of cyberattacks in Industrial Control Systems (ICS). As such systems are a frequent target of highly motivated attackers, researchers often resort to intrusion detection through machine learning techniques to detect new kinds of threats. However, current research initiatives, in general, pursue higher detection accuracies, neglecting the detection of new kind of threats and their proposal detection scope. This paper proposes a novel, reliable host-based intrusion detection for SCADA systems through the Operating System (OS) diversity. Our proposal evaluates, at the OS level, the SCADA communication over time and, opportunistically, detects, and chooses the most appropriate OS to be used in intrusion detection for reliability purposes. Experiments, performed through a variety of SCADA OSs front-end, shows that OS diversity provides higher intrusion detection scope, improving detection accuracy by up to 8 new attack categories. Besides, our proposal can opportunistically detect the most reliable OS that should be used for the current environment behavior, improving by up to 8%, on average, the system accuracy when compared to a single OS approach, in the best case.
In 5G networks, the Cloud Radio Access Network (C-RAN) is considered a promising future architecture in terms of minimizing energy consumption and allocating resources efficiently by providing real-time cloud infrastructures, cooperative radio, and centralized data processing. Recently, given their vulnerability to malicious attacks, the security of C-RAN networks has attracted significant attention. Among various anomaly-based intrusion detection techniques, the most promising one is the machine learning-based intrusion detection as it learns without human assistance and adjusts actions accordingly. In this direction, many solutions have been proposed, but they show either low accuracy in terms of attack classification or they offer just a single layer of attack detection. This research focuses on deploying a multi-stage machine learning-based intrusion detection (ML-IDS) in 5G C-RAN that can detect and classify four types of jamming attacks: constant jamming, random jamming, deceptive jamming, and reactive jamming. This deployment enhances security by minimizing the false negatives in C-RAN architectures. The experimental evaluation of the proposed solution is carried out using WSN-DS (Wireless Sensor Networks DataSet), which is a dedicated wireless dataset for intrusion detection. The final classification accuracy of attacks is 94.51% with a 7.84% false negative rate.
To reduce cost and ease maintenance, industrial control systems (ICS) have adopted Ethernetbased interconnections that integrate operational technology (OT) systems with information technology (IT) networks. This integration has made these critical systems vulnerable to attack. Security solutions tailored to ICS environments are an active area of research. Anomalybased network intrusion detection systems are well-suited for these environments. Often these systems must be optimized for their specific environment. In prior work, we introduced a method for assessing the impact of various anomaly-based network IDS settings on security. This paper reviews the experimental outcomes when we applied our method to a full-scale ICS test bed using actual attacks. Our method provides new and valuable data to operators enabling more informed decisions about IDS configurations.