Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2017-06-05
Shimada, Isamu, Higaki, Hiroaki.  2016.  Intentional Collisions for Secure Ad-Hoc Networks. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :183–188.

In ad-hoc networks, data messages are transmitted from a source wireless node to a destination one along a wireless multihop transmission route consisting of a sequence of intermediate wireless nodes. Each intermediate wireless node forwards data messages to its next-hop wireless node. Here, a wireless signal carrying the data message is broadcasted by using an omni antenna and it is not difficult for a eavesdropper wireless node to overhear the wireless signal to get the data message. Some researches show that it is useful to transmit noise wireless signal which collide to the data message wireless signal in order for interfering the overhearing. However, some special devices such as directional antennas and/or high computation power for complicated signal processing are required. For wireless multihop networks with huge number of wireless nodes, small and cheap wireless nodes are mandatory for construction of the network. This paper proposes the method for interfering the overhearing by the eavesdropper wireless nodes where routing protocol and data message transmission protocol with cooperative noise signal transmissions by 1-hop and 2-hop neighbor wireless nodes of each intermediate wireless node.

2017-09-05
Hari, Adiseshu, Lakshman, T. V..  2016.  The Internet Blockchain: A Distributed, Tamper-Resistant Transaction Framework for the Internet. Proceedings of the 15th ACM Workshop on Hot Topics in Networks. :204–210.

Existing security mechanisms for managing the Internet infrastructural resources like IP addresses, AS numbers, BGP advertisements and DNS mappings rely on a Public Key Infrastructure (PKI) that can be potentially compromised by state actors and Advanced Persistent Threats (APTs). Ideally the Internet infrastructure needs a distributed and tamper-resistant resource management framework which cannot be subverted by any single entity. A secure, distributed ledger enables such a mechanism and the blockchain is the best known example of distributed ledgers. In this paper, we propose the use of a blockchain based mechanism to secure the Internet BGP and DNS infrastructure. While the blockchain has scaling issues to be overcome, the key advantages of such an approach include the elimination of any PKI-like root of trust, a verifiable and distributed transaction history log, multi-signature based authorizations for enhanced security, easy extensibility and scriptable programmability to secure new types of Internet resources and potential for a built in cryptocurrency. A tamper resistant DNS infrastructure also ensures that it is not possible for the application level PKI to spoof HTTPS traffic.

2017-04-20
Gupta, K., Shukla, S..  2016.  Internet of Things: Security challenges for next generation networks. 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). :315–318.

Internet of Things(IoT) is the next big boom in the networking field. The vision of IoT is to connect daily used objects (which have the ability of sensing and actuation) to the Internet. This may or may or may not involve human. IoT field is still maturing and has many open issues. We build up on the security issues. As the devices have low computational power and low memory the existing security mechanisms (which are a necessity) should also be optimized accordingly or a clean slate approach needs to be followed. This is a survey paper to focus on the security aspects of IoT. We further also discuss the open challenges in this field.

2017-05-16
Yin, Shang-Nan, Kang, Ho-Seok, Chen, Zhi-Guo, Kim, Sung-Ryul.  2016.  Intrusion Detection System Based on Complex Event Processing in RFID Middleware. Proceedings of the International Conference on Research in Adaptive and Convergent Systems. :125–129.

Radio Frequency Identification (RFID) technology has been applied in many fields, such as tracking product through the supply chains, electronic passport (ePassport), proximity card, etc. Most companies will choose low-cost RFID tags. However, these RFID tags are almost no security mechanism so that criminals can easily clone these tags and get the user permissions. In this paper, we aim at more efficient detection proximity card be cloned and design a real-time intrusion detection system based on one tool of Complex Event Processing (Esper) in the RFID middleware. We will detect the cloned tags through training our system with the user's habits. When detected anomalous behavior which may clone tags have occurred, and then send the notification to user. We discuss the reliability of this intrusion detection system and describes in detail how to work.

2017-08-02
Nguyen, Trong-Dat, Lee, Sang-Won.  2016.  I/O Characteristics of MongoDB and Trim-based Optimization in Flash SSDs. Proceedings of the Sixth International Conference on Emerging Databases: Technologies, Applications, and Theory. :139–144.

NoSQL solutions become emerging for large scaled, high performance, schema-flexible applications. WiredTiger is cost effective, non-locking, no-overwrite storage used as default storage engine in MongoDB. Understanding I/O characteristics of storage engine is important not only for choosing suitable solution with an application but also opening opportunities for researchers optimizing current working system, especially building more flash-awareness NoSQL DBMS. This paper explores background of MongoDB internals then analyze I/O characteristics of WiredTiger storage engine in detail. We also exploit space management mechanism in WiredTiger by using TRIM command.

2017-11-13
Moldovan, G., Tragos, E. Z., Fragkiadakis, A., Pohls, H. C., Calvo, D..  2016.  An IoT Middleware for Enhanced Security and Privacy: The RERUM Approach. 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

The Internet of Things (IoT) presents itself as a promising set of key technologies to provide advanced smart applications. IoT has become a major trend lately and smart solutions can be found in a large variety of products. Since it provides a flexible and easy way to gather data from huge numbers of devices and exploit them ot provide new applications, it has become a central research area lately. However, due to the fact that IoT aims to interconnect millions of constrained devices that are monitoring the everyday life of people, acting upon physical objects around them, the security and privacy challenges are huge. Nevertheless, only lately the research focus has been on security and privacy solutions. Many solutions and IoT frameworks have only a minimum set of security, which is a basic access control. The EU FP7 project RERUM has a main focus on designing an IoT architecture based on the concepts of Security and Privacy by design. A central part of RERUM is the implementation of a middleware layer that provides extra functionalities for improved security and privacy. This work, presents the main elements of the RERUM middleware, which is based on the widely accepted OpenIoT middleware.

2017-08-02
Kubler, Sylvain, Robert, Jérémy, Hefnawy, Ahmed, Cherifi, Chantal, Bouras, Abdelaziz, Främling, Kary.  2016.  IoT-based Smart Parking System for Sporting Event Management. Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :104–114.

By connecting devices, people, vehicles and infrastructures everywhere in a city, governments and their partners can improve community wellbeing and other economic and financial aspects (e.g., cost and energy savings). Nonetheless, smart cities are complex ecosystems that comprise many different stakeholders (network operators, managed service providers, logistic centers...) who must work together to provide the best services and unlock the commercial potential of the IoT. This is one of the major challenges that faces today's smart city movement, and more generally the IoT as a whole. Indeed, while new smart connected objects hit the market every day, they mostly feed "vertical silos" (e.g., vertical apps, siloed apps...) that are closed to the rest of the IoT, thus hampering developers to produce new added value across multiple platforms. Within this context, the contribution of this paper is twofold: (i) present the EU vision and ongoing activities to overcome the problem of vertical silos; (ii) introduce recent IoT standards used as part of a recent Horizon 2020 IoT project to address this problem. The implementation of those standards for enhanced sporting event management in a smart city/government context (FIFA World Cup 2022) is developed, presented, and evaluated as a proof-of-concept.

2017-05-30
Bhatti, Saleem N., Phoomikiattisak, Ditchaphong, Simpson, Bruce.  2016.  IP Without IP Addresses. Proceedings of the 12th Asian Internet Engineering Conference. :41–48.

We discuss a key engineering challenge in implementing the Identifier- Locator Network Protocol (ILNP), as described in IRTF Experimental RFCs 6740–6748: enabling legacy applications that use the C sockets API. We have built the first two OS kernel implementations of ILNPv6 (ILNP as a superset of IPv6), in both the Linux OS kernel and the FreeBSD OS kernel. Our evaluation is in comparison with IPv6, in the context of a topical and challenging scenario: host mobility implemented as a purely end-to-end function. Our experiments show that ILNPv6 has excellent potential for deployment using existing IPv6 infrastructure, whilst offering the new properties and functionality of ILNP.

2017-08-02
Khalaf, Emad Taha, Mohammed, Muamer N., Sulaiman, Norrozila.  2016.  Iris Template Protection Based on Enhanced Hill Cipher. Proceedings of the 2016 International Conference on Communication and Information Systems. :53–57.

Biometric is uses to identify authorized person based on specific physiological or behavioral features. Template protection is a crucial requirement when designing an authentication system, where the template could be modified by attacker. Hill Cipher is a block cipher and symmetric key algorithm it has several advantages such as simplicity, high speed and high throughput can be used to protect Biometric Template. Unfortunately, Hill Cipher has some disadvantages such as takes smaller sizes of blocks, very simple and vulnerable for exhaustive key search attack and known plain text attack, also the key matrix which entered should be invertible. This paper proposed an enhancement to overcome these drawbacks of Hill Cipher by using a large and random key with large data block, beside overcome the Invertible-key Matrix problem. The efficiency of encryption has been checked out by Normalized Correlation Coefficient (NCC) and running time.

2017-06-05
Singh, Neha, Singh, Saurabh, Kumar, Naveen, Kumar, Rakesh.  2016.  Key Management Techniques for Securing MANET. Proceedings of the ACM Symposium on Women in Research 2016. :77–80.

A Mobile Ad hoc Network (MANET) is a spontaneous network consisting of wireless nodes which are mobile and self-configuring in nature. Devices in MANET can move freely in any direction independently and change its link frequently to other devices. MANET does not have centralized infrastructure and its characteristics makes this network vulnerable to various kinds of attacks. Data transfer is a major problem due to its nature of unreliable wireless medium. Commonly used technique for secure transmission in wireless network is cryptography. Use of cryptography key is often involved in most of cryptographic techniques. Key management is main component in security issues of MANET and various schemes have been proposed for it. In this paper, a study on various kinds of key management techniques in MANET is presented.

2017-08-02
Auxilia, M., Raja, K..  2016.  Knowledge Based Security Model for Banking in Cloud. Proceedings of the International Conference on Informatics and Analytics. :51:1–51:6.

Cloud computing is one of the happening technologies in these years and gives scope to lot of research ideas. Banks are likely to enter the cloud computing field because of abundant advantages offered by cloud like reduced IT costs, pay-per-use modeling, and business agility and green IT. Main challenges to be addressed while moving bank to cloud are security breach, governance, and Service Level Agreements (SLA). Banks should not give prospect for security breaches at any cost. Access control and authorization are vivacious solutions to security risks. Thus we are proposing a knowledge based security model addressing the present issue. Separate ontologies for subject, object, and action elements are created and an authorization rule is framed by considering the inter linkage between those elements to ensure data security with restricted access. Moreover banks are now using Software as a Service (SaaS), which is managed by Cloud Service Providers (CSPs). Banks rely upon the security measures provided by CSPs. If CSPs follow traditional security model, then the data security will be a big question. Our work facilitates the bank to pose some security measures on their side along with the security provided by the CSPs. Banks can add and delete rules according to their needs and can have control over the data in addition to CSPs. We also showed the performance analysis of our model and proved that our model provides secure access to bank data.

2017-09-26
Lavanya, Natarajan.  2016.  Lightweight Authentication for COAP Based IOT. Proceedings of the 6th International Conference on the Internet of Things. :167–168.

Security of Constrained application protocol(COAP) used instead of HTTP in Internet of Thing s(IoT) is achieved using DTLS which uses the Internet key exchange protocol for key exchange and management. In this work a novel key exchange and authentication protocol is proposed. CLIKEv2 protcol is a certificate less and light weight version of the existing protocol. The protocol design is tested with the formal protcol verification tool Scyther, where no named attacks are identified for the propsed protocol. Compared to the existing IKE protocol the CLIKEv2 protocol reduces the computation time, key sizes and ultimately reduces energy consumption.

2017-05-30
Chatzopoulos, Dimitris, Gujar, Sujit, Faltings, Boi, Hui, Pan.  2016.  LocalCoin: An Ad-hoc Payment Scheme for Areas with High Connectivity: Poster. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :365–366.

The popularity of digital currencies, especially cryptocurrencies, has been continuously growing since the appearance of Bitcoin. Bitcoin is a peer-to-peer (P2P) cryptocurrency protocol enabling transactions between individuals without the need of a trusted authority. Its network is formed from resources contributed by individuals known as miners. Users of Bitcoin currency create transactions that are stored in a specialised data structure called a block chain. Bitcoin's security lies in a proof-of-work scheme, which requires high computational resources at the miners. These miners have to be synchronised with any update in the network, which produces high data traffic rates. Despite advances in mobile technology, no cryptocurrencies have been proposed for mobile devices. This is largely due to the lower processing capabilities of mobile devices when compared with conventional computers and the poorer Internet connectivity to that of the wired networking. In this work, we propose LocalCoin, an alternative cryptocurrency that requires minimal computational resources, produces low data traffic and works with off-the-shelf mobile devices. LocalCoin replaces the computational hardness that is at the root of Bitcoin's security with the social hardness of ensuring that all witnesses to a transaction are colluders. It is based on opportunistic networking rather than relying on infrastructure and incorporates characteristics of mobile networks such as users' locations and their coverage radius in order to employ an alternative proof-of-work scheme. Localcoin features (i) a lightweight proof-of-work scheme and (ii) a distributed block chain.

2017-04-20
Akhtar, N., Matta, I., Wang, Y..  2016.  Managing NFV using SDN and control theory. NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium. :1005–1006.

Control theory and SDN (Software Defined Networking) are key components for NFV (Network Function Virtualization) deployment. However little has been done to use a control-theoretic approach for SDN and NFV management. In this demo, we describe a use case for NFV management using control theory and SDN. We use the management architecture of RINA (a clean-slate Recursive InterNetwork Architecture) to manage Virtual Network Function (VNF) instances over the GENI testbed. We deploy Snort, an Intrusion Detection System (IDS) as the VNF. Our network topology has source and destination hosts, multiple IDSes, an Open vSwitch (OVS) and an OpenFlow controller. A distributed management application running on RINA measures the state of the VNF instances and communicates this information to a Proportional Integral (PI) controller, which then provides load balancing information to the OpenFlow controller. The latter controller in turn updates traffic flow forwarding rules on the OVS switch, thus balancing load across the VNF instances. This demo demonstrates the benefits of using such a control-theoretic load balancing approach and the RINA management architecture in virtualized environments for NFV management. It also illustrates that the GENI testbed can easily support a wide range of SDN and NFV related experiments.

2017-05-22
Keller, Marcel, Orsini, Emmanuela, Scholl, Peter.  2016.  MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :830–842.

We consider the task of secure multi-party computation of arithmetic circuits over a finite field. Unlike Boolean circuits, arithmetic circuits allow natural computations on integers to be expressed easily and efficiently. In the strongest setting of malicious security with a dishonest majority –- where any number of parties may deviate arbitrarily from the protocol –- most existing protocols require expensive public-key cryptography for each multiplication in the preprocessing stage of the protocol, which leads to a high total cost. We present a new protocol that overcomes this limitation by using oblivious transfer to perform secure multiplications in general finite fields with reduced communication and computation. Our protocol is based on an arithmetic view of oblivious transfer, with careful consistency checks and other techniques to obtain malicious security at a cost of less than 6 times that of semi-honest security. We describe a highly optimized implementation together with experimental results for up to five parties. By making extensive use of parallelism and SSE instructions, we improve upon previous runtimes for MPC over arithmetic circuits by more than 200 times.

2017-08-02
Symeonidis, Panagiotis.  2016.  Matrix and Tensor Decomposition in Recommender Systems. Proceedings of the 10th ACM Conference on Recommender Systems. :429–430.

This turorial offers a rich blend of theory and practice regarding dimensionality reduction methods, to address the information overload problem in recommender systems. This problem affects our everyday experience while searching for knowledge on a topic. Naive Collaborative Filtering cannot deal with challenging issues such as scalability, noise, and sparsity. We can deal with all the aforementioned challenges by applying matrix and tensor decomposition methods. These methods have been proven to be the most accurate (i.e., Netflix prize) and efficient for handling big data. For each method (SVD, SVD++, timeSVD++, HOSVD, CUR, etc.) we will provide a detailed theoretical mathematical background and a step-by-step analysis, by using an integrated toy example, which runs throughout all parts of the tutorial, helping the audience to understand clearly the differences among factorisation methods.

2017-07-24
Mansoori, Masood, Welch, Ian, Hashemi, Seyed Ebrahim.  2016.  Measurement of IP and Network Tracking Behaviour of Malicious Websites. Proceedings of the Australasian Computer Science Week Multiconference. :38:1–38:8.

IP tracking and cloaking are practices for identifying users which are used legitimately by websites to provide services and content tailored to particular users. However, it is believed that these practices are also used by malicious websites to avoid detection by anti-virus companies crawling the web to find malware. In addition, malicious websites are also believed to use IP tracking in order to deliver targeted malware based upon a history of previous visits by users. In this paper we empirically investigate these beliefs and collect a large dataset of suspicious URLs in order to identify at what level IP tracking takes place that is at the level of an individual address or at the level of their network provider or organisation (Network tracking). Our results illustrate that IP tracking is used in a small subset of domains within our dataset while no strong indication of network tracking was observed.

2017-05-30
Bajpai, Vaibhav, Schönwälder, Jürgen.  2016.  Measuring the Effects of Happy Eyeballs. Proceedings of the 2016 Applied Networking Research Workshop. :38–44.

The IETF has developed protocols that promote a healthy IPv4 and IPv6 co-existence. The Happy Eyeballs (HE) algorithm, for instance, prevents bad user experience in situations where IPv6 connectivity is broken. Using an active test (happy) that measures TCP connection establishment times, we evaluate the effects of the HE algorithm. The happy test measures against ALEXA top 10K websites from 80 SamKnows probes connected to dual-stacked networks representing 58 different ASes. Using a 3-years long (2013 - 2016) dataset, we show that TCP connect times to popular websites over IPv6 have considerably improved over time. As of May 2016, 18% of these websites are faster over IPv6 with 91% of the rest at most 1 ms slower. The historical trend shows that only around 1% of the TCP connect times over IPv6 were ever above the HE timer value (300 ms), which leaves around 2% chance for IPv4 to win a HE race towards these websites. As such, 99% of these websites prefer IPv6 connections more than 98% of the time. We show that although absolute TCP connect times (in ms) are not that far apart in both address families, HE with a 300 ms timer value tends to prefer slower IPv6 connections in around 90% of the cases. We show that lowering the HE timer value to 150 ms gives us a margin benefit of 10% while retaining same preference levels over IPv6.

2017-06-05
Czerwinski, Wojciech, Martens, Wim, Niewerth, Matthias, Parys, Pawel.  2016.  Minimization of Tree Pattern Queries. Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. :43–54.

We investigate minimization of tree pattern queries that use the child relation, descendant relation, node labels, and wildcards. We prove that minimization for such tree patterns is Sigma2P-complete and thus solve a problem first attacked by Flesca, Furfaro, and Masciari in 2003. We first provide an example that shows that tree patterns cannot be minimized by deleting nodes. This example shows that the M-NR conjecture, which states that minimality of tree patterns is equivalent to their nonredundancy, is false. We then show how the example can be turned into a gadget that allows us to prove Sigma2P-completeness.

Jing, Xiao-Yuan, Qi, Fumin, Wu, Fei, Xu, Baowen.  2016.  Missing Data Imputation Based on Low-rank Recovery and Semi-supervised Regression for Software Effort Estimation. Proceedings of the 38th International Conference on Software Engineering. :607–618.

Software effort estimation (SEE) is a crucial step in software development. Effort data missing usually occurs in real-world data collection. Focusing on the missing data problem, existing SEE methods employ the deletion, ignoring, or imputation strategy to address the problem, where the imputation strategy was found to be more helpful for improving the estimation performance. Current imputation methods in SEE use classical imputation techniques for missing data imputation, yet these imputation techniques have their respective disadvantages and might not be appropriate for effort data. In this paper, we aim to provide an effective solution for the effort data missing problem. Incompletion includes the drive factor missing case and effort label missing case. We introduce the low-rank recovery technique for addressing the drive factor missing case. And we employ the semi-supervised regression technique to perform imputation in the case of effort label missing. We then propose a novel effort data imputation approach, named low-rank recovery and semi-supervised regression imputation (LRSRI). Experiments on 7 widely used software effort datasets indicate that: (1) the proposed approach can obtain better effort data imputation effects than other methods; (2) the imputed data using our approach can apply to multiple estimators well.

2017-05-22
Davidson, Alex, Fenn, Gregory, Cid, Carlos.  2016.  A Model for Secure and Mutually Beneficial Software Vulnerability Sharing. Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security. :3–14.

In this work we propose a model for conducting efficient and mutually beneficial information sharing between two competing entities, focusing specifically on software vulnerability sharing. We extend the two-stage game-theoretic model proposed by Khouzani et al. [18] for bug sharing, addressing two key features: we allow security information to be associated with different categories and severities, but also remove a large proportion of player homogeneity assumptions the previous work makes. We then analyse how these added degrees of realism affect the trading dynamics of the game. Secondly, we develop a new private set operation (PSO) protocol that enables the removal of the trusted mediation requirement. The PSO functionality allows for bilateral trading between the two entities up to a mutually agreed threshold on the value of information shared, keeping all other input information secret. The protocol scales linearly with set sizes and we give an implementation that establishes the practicality of the design for varying input parameters. The resulting model and protocol provide a framework for practical and secure information sharing between competing entities.

2017-08-02
Rafailidis, Dimitrios.  2016.  Modeling Trust and Distrust Information in Recommender Systems via Joint Matrix Factorization with Signed Graphs. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :1060–1065.

We propose an efficient recommendation algorithm, by incorporating the side information of users' trust and distrust social relationships into the learning process of a Joint Non-negative Matrix Factorization technique based on Signed Graphs, namely JNMF-SG. The key idea in this study is to generate clusters based on signed graphs, considering positive and negative weights for the trust and distrust relationships, respectively. Using a spectral clustering approach for signed graphs, the clusters are extracted on condition that users with positive connections should lie close, while users with negative ones should lie far. Then, we propose a Joint Non-negative Matrix factorization framework, by generating the final recommendations, using the user-item and user-cluster associations over the joint factorization. In our experiments with a dataset from a real-world social media platform, we show that we significantly increase the recommendation accuracy, compared to state-of-the-art methods that also consider the trust and distrust side information in matrix factorization.

Twardowski, Bart\textbackslashlomiej.  2016.  Modelling Contextual Information in Session-Aware Recommender Systems with Neural Networks. Proceedings of the 10th ACM Conference on Recommender Systems. :273–276.

Preparing recommendations for unknown users or such that correctly respond to the short-term needs of a particular user is one of the fundamental problems for e-commerce. Most of the common Recommender Systems assume that user identification must be explicit. In this paper a Session-Aware Recommender System approach is presented where no straightforward user information is required. The recommendation process is based only on user activity within a single session, defined as a sequence of events. This information is incorporated in the recommendation process by explicit context modeling with factorization methods and a novel approach with Recurrent Neural Network (RNN). Compared to the session modeling approach, RNN directly models the dependency of user observed sequential behavior throughout its recurrent structure. The evaluation discusses the results based on sessions from real-life system with ephemeral items (identified only by the set of their attributes) for the task of top-n best recommendations.

2017-05-22
Kurilova, Darya, Potanin, Alex, Aldrich, Jonathan.  2016.  Modules in Wyvern: Advanced Control over Security and Privacy. Proceedings of the Symposium and Bootcamp on the Science of Security. :68–68.

In today's systems, restricting the authority of untrusted code is difficult because, by default, code has the same authority as the user running it. Object capabilities are a promising way to implement the principle of least authority, but being too low-level and fine-grained, take away many conveniences provided by module systems. We present a module system design that is capability-safe, yet preserves most of the convenience of conventional module systems. We demonstrate how to ensure key security and privacy properties of a program as a mode of use of our module system. Our authority safety result formally captures the role of mutable state in capability-based systems and uses a novel non-transitive notion of authority, which allows us to reason about authority restriction: the encapsulation of a stronger capability inside a weaker one.

2017-05-30
Li, Jason, Yackoski, Justin, Evancich, Nicholas.  2016.  Moving Target Defense: A Journey from Idea to Product. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :69–79.

In today's enterprise networks, there are many ways for a determined attacker to obtain a foothold, bypass current protection technologies, and attack the intended target. Over several years we have developed the Self-shielding Dynamic Network Architecture (SDNA) technology, which prevents an attacker from targeting, entering, or spreading through an enterprise network by adding dynamics that present a changing view of the network over space and time. SDNA was developed with the support of government sponsored research and development and corporate internal resources. The SDNA technology was purchased by Cryptonite, LLC in 2015 and has been developed into a robust product offering called Cryptonite NXT. In this paper, we describe the journey and lessons learned along the course of feasibility demonstration, technology development, security testing, productization, and deployment in a production network.