Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2022-12-23
Thapa, Ria, Sehl, Bhavya, Gupta, Suryaansh, Goyal, Ankur.  2022.  Security of operating system using the Metasploit framework by creating a backdoor from remote setup. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2618–2622.
The era of technology has seen many rising inventions and with that rise, comes the need to secure our systems. In this paper we have discussed how the old generation of people are falling behind at being updated in tandem with technology, and losing track of the knowledge required to process the same. In addition this factor leads to leakage of critical personal information. This paper throws light upon the steps taken in order to exploit the pre-existing operating system, Windows 7, Ultimate, using a ubiquitous framework used by everyone, i.e. Metasploit. It involves installation of a backdoor on the victim machine, from a remote setup, mostly Kali Linux operating machine. This backdoor allows the attackers to create executable files and deploy them in the windows system to gain access on the machine, remotely. After gaining access, manipulation of sensitive data becomes easy. Access to the admin rights of any system is a red alert because it means that some outsider has intense access to personal information of a human being and since data about someone explains a lot of things about them. It basically is exposing and human hate that. It depraves one of their personal identity. Therefore security is not something that should be taken lightly. It is supposed to be dealt with utmost care.
2023-02-17
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.  2022.  Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
2023-09-01
Gu, Yujie, Akao, Sonata, Esfahani, Navid Nasr, Miao, Ying, Sakurai, Kouichi.  2022.  On the Security Properties of Combinatorial All-or-nothing Transforms. 2022 IEEE International Symposium on Information Theory (ISIT). :1447—1452.
All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have many applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs s-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs s-tuples are equiprobable, and has weak security provided that all the inputs s-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial (t, s, v)-AONTs. Concretely, we consider the typical scenario that all the s inputs take values independently (but not necessarily identically) and quantify the amount of information H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) about any t inputs \textbackslashmathcalX that is not revealed by any s−t outputs \textbackslashmathcalY. In particular, we establish the general lower and upper bounds on H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases.
2023-01-13
Muhamad Nur, Gunawan, Lusi, Rahmi, Fitroh, Fitroh.  2022.  Security Risk Management Analysis using Failure Mode and Effects Analysis (FMEA) Method and Mitigation Using ISO 27002:2013 for Agency in District Government. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :01–06.
The Personnel Management Information System is managed by the Personnel and Human Resources Development Agency on local government office to provide personnel services. The existence of a system and information technology can help ongoing business processes but can have an impact or risk if the proper mitigation is not carried out. It is known that the problems are damage to databases, servers, and computer equipment due to bad weather, network connections being lost due to power outages, data loss due to not having backup data, and human error. This resulted in PMIS being inaccessible for some time, thus hampering ongoing business processes and causing financial losses. This study aims to identify risks, conduct a risk assessment using the failure mode and effects analysis (FMEA) method, and provide mitigation recommendations based on the ISO/IEC 27002:2013 standard. The analysis results obtained 50 failure modes categorized into five asset categories, and six failure modes have a high level. Then provide mitigation recommendations based on the ISO/IEC 27002:2013 Standard, which has been adapted to the needs of Human Resources Development Agency. Thus, the results of this study are expected to assist and serve as material for local office government's consideration in making improvements and security controls to avoid emerging threats to information assets.
2023-02-17
Yerima, Suleiman Y., Bashar, Abul.  2022.  Semi-supervised novelty detection with one class SVM for SMS spam detection. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
The volume of SMS messages sent on a daily basis globally has continued to grow significantly over the past years. Hence, mobile phones are becoming increasingly vulnerable to SMS spam messages, thereby exposing users to the risk of fraud and theft of personal data. Filtering of messages to detect and eliminate SMS spam is now a critical functionality for which different types of machine learning approaches are still being explored. In this paper, we propose a system for detecting SMS spam using a semi-supervised novelty detection approach based on one class SVM classifier. The system is built as an anomaly detector that learns only from normal SMS messages thus enabling detection models to be implemented in the absence of labelled SMS spam training examples. We evaluated our proposed system using a benchmark dataset consisting of 747 SMS spam and 4827 non-spam messages. The results show that our proposed method out-performed the traditional supervised machine learning approaches based on binary, frequency or TF-IDF bag-of-words. The overall accuracy was 98% with 100% SMS spam detection rate and only around 3% false positive rate.
ISSN: 2157-8702
2023-03-17
Zhao, Ran, Qin, Qi, Xu, Ningya, Nan, Guoshun, Cui, Qimei, Tao, Xiaofeng.  2022.  SemKey: Boosting Secret Key Generation for RIS-assisted Semantic Communication Systems. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–5.
Deep learning-based semantic communications (DLSC) significantly improve communication efficiency by only transmitting the meaning of the data rather than a raw message. Such a novel paradigm can brace the high-demand applications with massive data transmission and connectivities, such as automatic driving and internet-of-things. However, DLSC are also highly vulnerable to various attacks, such as eavesdropping, surveillance, and spoofing, due to the openness of wireless channels and the fragility of neural models. To tackle this problem, we present SemKey, a novel physical layer key generation (PKG) scheme that aims to secure the DLSC by exploring the underlying randomness of deep learning-based semantic communication systems. To boost the generation rate of the secret key, we introduce a reconfigurable intelligent surface (RIS) and tune its elements with the randomness of semantic drifts between a transmitter and a receiver. Precisely, we first extract the random features of the semantic communication system to form the randomly varying switch sequence of the RIS-assisted channel and then employ the parallel factor-based channel detection method to perform the channel detection under RIS assistance. Experimental results show that our proposed SemKey significantly improves the secret key generation rate, potentially paving the way for physical layer security for DLSC.
ISSN: 2577-2465
2023-04-27
Spliet, Roy, Mullins, Robert D..  2022.  Sim-D: A SIMD Accelerator for Hard Real-Time Systems. IEEE Transactions on Computers. 71:851–865.
Emerging safety-critical systems require high-performance data-parallel architectures and, problematically, ones that can guarantee tight and safe worst-case execution times. Given the complexity of existing architectures like GPUs, it is unlikely that sufficiently accurate models and algorithms for timing analysis will emerge in the foreseeable future. This motivates our work on Sim-D, a clean-slate approach to designing a real-time data-parallel architecture. Sim-D enforces a predictable execution model by isolating compute- and access resources in hardware. The DRAM controller uninterruptedly transfers tiles of data, requested by entire work-groups. This permits work-groups to be executed as a sequence of deterministic access- and compute phases, scheduling phases from up to two work-groups in parallel. Evaluation using a cycle-accurate timing model shows that Sim-D can achieve performance on par with an embedded-grade NVIDIA TK1 GPU under two conditions: applications refrain from using indirect DRAM transfers into large buffers, and Sim-D's scratchpads provide sufficient bandwidth. Sim-D's design facilitates derivation of safe WCET bounds that are tight within 12.7 percent on average, at an additional average performance penalty of \textbackslashsim∼9.2 percent caused by scheduling restrictions on phases.
Conference Name: IEEE Transactions on Computers
2023-05-19
Gao, Xiao.  2022.  Sliding Mode Control Based on Disturbance Observer for Cyber-Physical Systems Security. 2022 4th International Conference on Control and Robotics (ICCR). :275—279.
In this paper, a sliding mode control (SMC) based on nonlinear disturbance observer and intermittent control is proposed to maximize the security of cyber-physical systems (CPSs), aiming at the cyber-attacks and physical uncertainties of cyber-physical systems. In the CPSs, the transmission of information data and control signals to the remote end through the network may lead to cyber attacks, and there will be uncertainties in the physical system. Therefore, this paper establishes a CPSs model that includes network attacks and physical uncertainties. Secondly, according to the analysis of the mathematical model, an adaptive SMC based on disturbance observer and intermittent control is designed to keep the CPSs stable in the presence of network attacks and physical uncertainties. In this strategy, the adaptive strategy suppresses the controller The chattering of the output. Intermittent control breaks the limitations of traditional continuous control to ensure efficient use of resources. Finally, to prove the control performance of the controller, numerical simulation results are given.
2023-07-31
Wang, Rui, Si, Liang, He, Bifeng.  2022.  Sliding-Window Forward Error Correction Based on Reference Order for Real-Time Video Streaming. IEEE Access. 10:34288—34295.
In real-time video streaming, data packets are transported over the network from a transmitter to a receiver. The quality of the received video fluctuates as the network conditions change, and it can degrade substantially when there is considerable packet loss. Forward error correction (FEC) techniques can be used to recover lost packets by incorporating redundant data. Conventional FEC schemes do not work well when scalable video coding (SVC) is adopted. In this paper, we propose a novel FEC scheme that overcomes the drawbacks of these schemes by considering the reference picture structure of SVC and weighting the reference pictures more when FEC redundancy is applied. The experimental results show that the proposed FEC scheme outperforms conventional FEC schemes.
2022-12-20
Kawade, Alisa, Chujo, Wataru, Kobayashi, Kentaro.  2022.  Smartphone screen to camera uplink communication with enhanced physical layer security by low-luminance space division multiplexing. 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :176–180.
To achieve secure uplink communication from smartphones’ screen to a telephoto camera at a long distance of 3.5 meters, we demonstrate that low-luminance space division multiplexing screen is effective in enhancement of the physical layer security. First, a numerical model shows that the spatial inter-symbol interference caused by space division multiplexing prevents eavesdropping from a wide angle by the camera. Second, wide-angle characteristics of the symbol error rate and the pixel value distribution are measured to verify the numerical analysis. We experimentally evaluate the difference in the performances from a wide angle depending on the screen luminance and color. We also evaluate the performances at a long distance in front of the screen and a short distance from a wider angle.
2023-02-17
Ubale, Ganesh, Gaikwad, Siddharth.  2022.  SMS Spam Detection Using TFIDF and Voting Classifier. 2022 International Mobile and Embedded Technology Conference (MECON). :363–366.
In today’s digital world, Mobile SMS (short message service) communication has almost become a part of every human life. Meanwhile each mobile user suffers from the harass of Spam SMS. These Spam SMS constitute veritable nuisance to mobile subscribers. Though hackers or spammers try to intrude in mobile computing devices, SMS support for mobile devices become more vulnerable as attacker tries to intrude into the system by sending unsolicited messages. An attacker can gain remote access over mobile devices. We propose a novel approach that can analyze message content and find features using the TF-IDF techniques to efficiently detect Spam Messages and Ham messages using different Machine Learning Classifiers. The Classifiers going to use in proposed work can be measured with the help of metrics such as Accuracy, Precision and Recall. In our proposed approach accuracy rate will be increased by using the Voting Classifier.
2023-03-03
Ajvazi, Grela, Halili, Festim.  2022.  SOAP messaging to provide quality of protection through Kerberos Authentication. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
Service-oriented architecture (SOA) is a widely adopted architecture that uses web services, which have become increasingly important in the development and integration of applications. Its purpose is to allow information system technologies to interact by exchanging messages between sender and recipient using the simple object access protocol (SOAP), an XML document, or the HTTP protocol. We will attempt to provide an overview and analysis of standards in the field of web service security, specifically SOAP messages, using Kerberos authentication, which is a computer network security protocol that provides users with high security for requests between two or more hosts located in an unreliable location such as the internet.Everything that has to do with Kerberos has to deal with systems that rely on data authentication.
ISSN: 2157-8702
2023-09-01
Ouyang, Chongjun, Xu, Hao, Zang, Xujie, Yang, Hongwen.  2022.  Some Discussions on PHY Security in DF Relay. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :393—397.
Physical layer (PHY) security in decode-and-forward (DF) relay systems is discussed. Based on the types of wiretap links, the secrecy performance of three typical secure DF relay models is analyzed. Different from conventional works in this field, rigorous derivations of the secrecy channel capacity are provided from an information-theoretic perspective. Meanwhile, closed-form expressions are derived to characterize the secrecy outage probability (SOP). For the sake of unveiling more system insights, asymptotic analyses are performed on the SOP for a sufficiently large signal-to-noise ratio (SNR). The analytical results are validated by computer simulations and are in excellent agreement.
2023-04-28
Jiang, Zhenghong.  2022.  Source Code Vulnerability Mining Method based on Graph Neural Network. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1177–1180.
Vulnerability discovery is an important field of computer security research and development today. Because most of the current vulnerability discovery methods require large-scale manual auditing, and the code parsing process is cumbersome and time-consuming, the vulnerability discovery effect is reduced. Therefore, for the uncertainty of vulnerability discovery itself, it is the most basic tool design principle that auxiliary security analysts cannot completely replace them. The purpose of this paper is to study the source code vulnerability discovery method based on graph neural network. This paper analyzes the three processes of data preparation, source code vulnerability mining and security assurance of the source code vulnerability mining method, and also analyzes the suspiciousness and particularity of the experimental results. The empirical analysis results show that the types of traditional source code vulnerability mining methods become more concise and convenient after using graph neural network technology, and we conducted a survey and found that more than 82% of people felt that the design source code vulnerability mining method used When it comes to graph neural networks, it is found that the design efficiency has become higher.
2023-02-17
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
2023-01-05
Omman, Bini, Eldho, Shallet Mary T.  2022.  Speech Emotion Recognition Using Bagged Support Vector Machines. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—4.
Speech emotion popularity is one of the quite promising and thrilling issues in the area of human computer interaction. It has been studied and analysed over several decades. It’s miles the technique of classifying or identifying emotions embedded inside the speech signal.Current challenges related to the speech emotion recognition when a single estimator is used is difficult to build and train using HMM and neural networks,Low detection accuracy,High computational power and time.In this work we executed emotion category on corpora — the berlin emodb, and the ryerson audio-visible database of emotional speech and track (Ravdess). A mixture of spectral capabilities was extracted from them which changed into further processed and reduced to the specified function set. When compared to single estimators, ensemble learning has been shown to provide superior overall performance. We endorse a bagged ensemble model which consist of support vector machines with a gaussian kernel as a possible set of rules for the hassle handy. Inside the paper, ensemble studying algorithms constitute a dominant and state-of-the-art approach for acquiring maximum overall performance.
2023-02-03
Sultana, Fozia, Arain, Qasim Ali, Soothar, Perman, Jokhio, Imran Ali, Zubedi, Asma.  2022.  A Spoofing Proof Stateless Session Architecture. 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :80–84.
To restrict unauthorized access to the data of the website. Most of the web-based systems nowadays require users to verify themselves before accessing the website is authentic information. In terms of security, it is very important to take different security measures for the protection of the authentic data of the website. However, most of the authentication systems which are used on the web today have several security flaws. This document is based on the security of the previous schemes. Compared to the previous approaches, this “spoofed proof stateless session model” method offers superior security assurance in a scenario in which an attacker has unauthorized access to the data of the website. The various protocol models are being developed and implemented on the web to analyze the performance. The aim was to secure the authentic database backups of the website and prevent them from SQL injection attacks by using the read-only properties for the database. This limits potential harm and provides users with reasonable security safeguards when an attacker has an unauthorized read-only access to the website's authentic database. This scheme provides robustness to the disclosure of authentic databases. Proven experimental results show the overheads due to the modified authentication method and the insecure model.
Zheng, Jiahui, Li, Junjian, Li, Chao, Li, Ran.  2022.  A SQL Blind Injection Method Based on Gated Recurrent Neural Network. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :519–525.
Security is undoubtedly the most serious problem for Web applications, and SQL injection (SQLi) attacks are one of the most damaging. The detection of SQL blind injection vulnerability is very important, but unfortunately, it is not fast enough. This is because time-based SQL blind injection lacks web page feedback, so the delay function can only be set artificially to judge whether the injection is successful by observing the response time of the page. However, brute force cracking and binary search methods used in injection require more web requests, resulting in a long time to obtain database information in SQL blind injection. In this paper, a gated recurrent neural network-based SQL blind injection technology is proposed to generate the predictive characters in SQL blind injection. By using the neural language model based on deep learning and character sequence prediction, the method proposed in this paper can learn the regularity of common database information, so that it can predict the next possible character according to the currently obtained database information, and sort it according to probability. In this paper, the training model is evaluated, and experiments are carried out on the shooting range to compare the method used in this paper with sqlmap (the most advanced sqli test automation tool at present). The experimental results show that the method used in this paper is more effective and significant than sqlmap in time-based SQL blind injection. It can obtain the database information of the target site through fewer requests, and run faster.
2022-12-02
Macabale, Nemesio A..  2022.  On the Stability of Load Adaptive Routing Over Wireless Community Mesh and Sensor Networks. 2022 24th International Conference on Advanced Communication Technology (ICACT). :21—26.
Wireless mesh networks are increasingly deployed as a flexible and low-cost alternative for providing wireless services for a variety of applications including community mesh networking, medical applications, and disaster ad hoc communications, sensor and IoT applications. However, challenges remain such as interference, contention, load imbalance, and congestion. To address these issues, previous work employ load adaptive routing based on load sensitive routing metrics. On the other hand, such approach does not immediately improve network performance because the load estimates used to choose routes are themselves affected by the resulting routing changes in a cyclical manner resulting to oscillation. Although this is not a new phenomenon and has been studied in wired networks, it has not been investigated extensively in wireless mesh and/or sensor networks. We present these instabilities and how they pose performance, security, and energy issues to these networks. Accordingly, we present a feedback-aware mapping system called FARM that handles these instabilities in a manner analogous to a control system with feedback control. Results show that FARM stabilizes routes that improves network performance in throughput, delay, energy efficiency, and security.
2023-07-21
Abbasi, Nida Itrat, Song, Siyang, Gunes, Hatice.  2022.  Statistical, Spectral and Graph Representations for Video-Based Facial Expression Recognition in Children. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1725—1729.
Child facial expression recognition is a relatively less investigated area within affective computing. Children’s facial expressions differ significantly from adults; thus, it is necessary to develop emotion recognition frameworks that are more objective, descriptive and specific to this target user group. In this paper we propose the first approach that (i) constructs video-level heterogeneous graph representation for facial expression recognition in children, and (ii) predicts children’s facial expressions using the automatically detected Action Units (AUs). To this aim, we construct three separate length-independent representations, namely, statistical, spectral and graph at video-level for detailed multi-level facial behaviour decoding (AU activation status, AU temporal dynamics and spatio-temporal AU activation patterns, respectively). Our experimental results on the LIRIS Children Spontaneous Facial Expression Video Database demonstrate that combining these three feature representations provides the highest accuracy for expression recognition in children.
2023-02-03
Peng, Jiang, Jiang, Wendong, Jiang, Hong, Ge, Huangxu, Gong, Peilin, Luo, Lingen.  2022.  Stochastic Vulnerability Analysis methodology for Power Transmission Network Considering Wind Generation. 2022 Power System and Green Energy Conference (PSGEC). :85–90.
This paper proposes a power network vulnerability analysis method based on topological approach considering of uncertainties from high-penetrated wind generations. In order to assess the influence of the impact of wind generation owing to its variable wind speed etc., the Quasi Monte Carlo based probabilistic load flow is adopted and performed. On the other hand, an extended stochastic topological vulnerability method involving Complex Network theory with probabilistic load flow is proposed. Corresponding metrics, namely stochastic electrical betweenness and stochastic net-ability are proposed respectively and applied to analyze the vulnerability of power network with wind generations. The case study of CIGRE medium voltage benchmark network is performed for illustration and evaluation. Furthermore, a cascading failures model considering the stochastic metrics is also developed to verify the effectiveness of proposed methodology.
2023-01-13
Kappelhoff, Fynn, Rasche, Rasmus, Mukhopadhyay, Debdeep, Rührmair, Ulrich.  2022.  Strong PUF Security Metrics: Response Sensitivity to Small Challenge Perturbations. 2022 23rd International Symposium on Quality Electronic Design (ISQED). :1—10.
This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.This first manuscript within the abovementioned sequence treats one of the conceptually most straightforward security metrics on that path: It investigates the effects that small perturbations in the PUF-challenges have on the resulting PUF-responses. We first develop and implement several sub-metrics that realize this approach in practice. We then empirically show that these metrics have surprising predictive power, and compare our obtained test scores with the known real-world security of several popular Strong PUF designs. The latter include (XOR) Arbiter PUFs, Feed-Forward Arbiter PUFs, and (XOR) Bistable Ring PUFs. Along the way, our manuscript also suggests techniques for representing the results of our metrics graphically, and for interpreting them in a meaningful manner.
2023-08-11
Tsuruta, Takuya, Araki, Shunsuke, Miyazaki, Takeru, Uehara, Satoshi, Kakizaki, Ken'ichi.  2022.  A Study on a DDH-Based Keyed Homomorphic Encryption Suitable to Machine Learning in the Cloud. 2022 IEEE International Conference on Consumer Electronics – Taiwan. :167—168.
Homomorphic encryption is suitable for a machine learning in the cloud such as a privacy-preserving machine learning. However, ordinary homomorphic public key encryption has a problem that public key holders can generate ciphertexts and anyone can execute homomorphic operations. In this paper, we will propose a solution based on the Keyed Homomorphic-Public Key Encryption proposed by Emura et al.
2023-03-17
Lee, Sun-Jin, Shim, Hye-Yeon, Lee, Yu-Rim, Park, Tae-Rim, Park, So-Hyun, Lee, Il-Gu.  2022.  Study on Systematic Ransomware Detection Techniques. 2022 24th International Conference on Advanced Communication Technology (ICACT). :297–301.
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
ISSN: 1738-9445
2023-06-22
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.