Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-05-12
Qiu, Zhengyi, Shao, Shudi, Zhao, Qi, Khan, Hassan Ali, Hui, Xinning, Jin, Guoliang.  2022.  A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :744–756.

Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.

ISSN: 2574-3864

2023-06-29
Kanagavalli, N., Priya, S. Baghavathi, D, Jeyakumar.  2022.  Design of Hyperparameter Tuned Deep Learning based Automated Fake News Detection in Social Networking Data. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :958–963.

Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.

2023-06-22
Sai, A N H Dhatreesh, Tilak, B H, Sanjith, N Sai, Suhas, Padi, Sanjeetha, R.  2022.  Detection and Mitigation of Low and Slow DDoS attack in an SDN environment. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :106–111.

Distributed Denial of Service (DDoS) attacks aim to make a server unresponsive by flooding the target server with a large volume of packets (Volume based DDoS attacks), by keeping connections open for a long time and exhausting the resources (Low and Slow DDoS attacks) or by targeting protocols (Protocol based attacks). Volume based DDoS attacks that flood the target server with a large number of packets are easier to detect because of the abnormality in packet flow. Low and Slow DDoS attacks, however, make the server unavailable by keeping connections open for a long time, but send traffic similar to genuine traffic, making detection of such attacks difficult. This paper proposes a solution to detect and mitigate one such Low and slow DDoS attack, Slowloris in an SDN (Software Defined Networking) environment. The proposed solution involves communication between the detection and mitigation module and the controller of the Software Defined Network to get data to detect and mitigate low and slow DDoS attack.

2023-06-29
Rahman, Md. Shahriar, Ashraf, Faisal Bin, Kabir, Md. Rayhan.  2022.  An Efficient Deep Learning Technique for Bangla Fake News Detection. 2022 25th International Conference on Computer and Information Technology (ICCIT). :206–211.

People connect with a plethora of information from many online portals due to the availability and ease of access to the internet and electronic communication devices. However, news portals sometimes abuse press freedom by manipulating facts. Most of the time, people are unable to discriminate between true and false news. It is difficult to avoid the detrimental impact of Bangla fake news from spreading quickly through online channels and influencing people’s judgment. In this work, we investigated many real and false news pieces in Bangla to discover a common pattern for determining if an article is disseminating incorrect information or not. We developed a deep learning model that was trained and validated on our selected dataset. For learning, the dataset contains 48,678 legitimate news and 1,299 fraudulent news. To deal with the imbalanced data, we used random undersampling and then ensemble to achieve the combined output. In terms of Bangla text processing, our proposed model achieved an accuracy of 98.29% and a recall of 99%.

2022-12-09
Janani, V.S., Devaraju, M..  2022.  An Efficient Distributed Secured Broadcast Stateless Group Key Management Scheme for Mobile Ad Hoc Networks. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.

This paper addresses the issues in managing group key among clusters in Mobile Ad hoc Networks (MANETs). With the dynamic movement of the nodes, providing secure communication and managing secret keys in MANET is difficult to achieve. In this paper, we propose a distributed secure broadcast stateless groupkey management framework (DSBS-GKM) for efficient group key management. This scheme combines the benefits of hash function and Lagrange interpolation polynomial in managing MANET nodes. To provide a strong security mechanism, a revocation system that detects and revokes misbehaviour nodes is presented. The simulation results show that the proposed DSBS-GKM scheme attains betterments in terms of rekeying and revocation performance while comparing with other existing key management schemes.

2023-06-23
Xia, Tieniu.  2022.  Embedded Basketball Motion Detection Video Target Tracking Algorithm Based on Deep Learning. 2022 International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS). :143–146.

With the rapid development of artificial intelligence, video target tracking is widely used in the fields of intelligent video surveillance, intelligent transportation, intelligent human-computer interaction and intelligent medical diagnosis. Deep learning has achieved remarkable results in the field of computer vision. The development of deep learning not only breaks through many problems that are difficult to be solved by traditional algorithms, improves the computer's cognitive level of images and videos, but also promotes the progress of related technologies in the field of computer vision. This paper combines the deep learning algorithm and target tracking algorithm to carry out relevant experiments on basketball motion detection video, hoping that the experimental results can be helpful to basketball motion detection video target tracking.

2023-07-28
Hasan, Darwito, Haryadi Amran, Sudarsono, Amang.  2022.  Environmental Condition Monitoring and Decision Making System Using Fuzzy Logic Method. 2022 International Electronics Symposium (IES). :267—271.

Currently, air pollution is still a problem that requires special attention, especially in big cities. Air pollution can come from motor vehicle fumes, factory smoke or other particles. To overcome these problems, a system is made that can monitor environmental conditions in order to know the good and bad of air quality in an environment and is expected to be a solution to reduce air pollution that occurs. The system created will utilize the Wireless Sensor Network (WSN) combined with Waspmote Smart Environment PRO, so that later data will be obtained in the form of temperature, humidity, CO levels and CO2 levels. From the sensor data that has been processed on Waspmote, it will then be used as input for data processing using a fuzzy algorithm. The classification obtained from sensor data processing using fuzzy to monitor environmental conditions there are 5 classifications, namely Very Good, Good, Average, Bad and Dangerous. Later the data that has been collected will be distributed to Meshlium as a gateway and will be stored in the database. The process of sending information between one party to another needs to pay attention to the confidentiality of data and information. The final result of the implementation of this research is that the system is able to classify values using fuzzy algorithms and is able to secure text data that will be sent to the database via Meshlium, and is able to display data sent to the website in real time.

2023-04-14
Hwang, Seunggyu, Lee, Hyein, Kim, Sooyoung.  2022.  Evaluation of physical-layer security schemes for space-time block coding under imperfect channel estimation. 2022 27th Asia Pacific Conference on Communications (APCC). :580–585.

With the advent of massive machine type of communications, security protection becomes more important than ever. Efforts have been made to impose security protection capability to physical-layer signal design, so called physical-layer security (PLS). The purpose of this paper is to evaluate the performance of PLS schemes for a multi-input-multi-output (MIMO) systems with space-time block coding (STBC) under imperfect channel estimation. Three PLS schemes for STBC schemes are modeled and their bit error rate (BER) performances are evaluated under various channel estimation error environments, and their performance characteristics are analyzed.

ISSN: 2163-0771

2023-06-29
Matheven, Anand, Kumar, Burra Venkata Durga.  2022.  Fake News Detection Using Deep Learning and Natural Language Processing. 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI). :11–14.

The rise of social media has brought the rise of fake news and this fake news comes with negative consequences. With fake news being such a huge issue, efforts should be made to identify any forms of fake news however it is not so simple. Manually identifying fake news can be extremely subjective as determining the accuracy of the information in a story is complex and difficult to perform, even for experts. On the other hand, an automated solution would require a good understanding of NLP which is also complex and may have difficulties producing an accurate output. Therefore, the main problem focused on this project is the viability of developing a system that can effectively and accurately detect and identify fake news. Finding a solution would be a significant benefit to the media industry, particularly the social media industry as this is where a large proportion of fake news is published and spread. In order to find a solution to this problem, this project proposed the development of a fake news identification system using deep learning and natural language processing. The system was developed using a Word2vec model combined with a Long Short-Term Memory model in order to showcase the compatibility of the two models in a whole system. This system was trained and tested using two different dataset collections that each consisted of one real news dataset and one fake news dataset. Furthermore, three independent variables were chosen which were the number of training cycles, data diversity and vector size to analyze the relationship between these variables and the accuracy levels of the system. It was found that these three variables did have a significant effect on the accuracy of the system. From this, the system was then trained and tested with the optimal variables and was able to achieve the minimum expected accuracy level of 90%. The achieving of this accuracy levels confirms the compatibility of the LSTM and Word2vec model and their capability to be synergized into a single system that is able to identify fake news with a high level of accuracy.

ISSN: 2640-0146

Bide, Pramod, Varun, Patil, Gaurav, Shah, Samveg, Patil, Sakshi.  2022.  Fakequipo: Deep Fake Detection. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–5.

Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.

2022-04-14
Sardar, Muhammad, Fetzer, Christof.  2022.  Formal Foundations for SCONE attestation and Intel SGX Data Center Attestation Primitives.
One of the essential features of confidential computing is the ability to attest to an application remotely. Remote attestation ensures that the right code is running in the correct environment. We need to ensure that all components that an adversary might use to impact the integrity, confidentiality, and consistency of an application are attested. Which components need to be attested is defined with the help of a policy. Verification of the policy is performed with the help of an attestation engine. Since remote attestation bootstraps the trust in remote applications, any vulnerability in the attestation mechanism can therefore impact the security of an application. Moreover, mistakes in the attestation policy can result in data, code, and secrets being vulnerable. Our work focuses on 1) how we can verify the attestation mechanisms and 2) how to verify the policy to ensure that data, code, and secrets are always protected.
2023-06-23
Chen, Meixu, Webb, Richard, Bovik, Alan C..  2022.  Foveated MOVI-Codec: Foveation-based Deep Video Compression without Motion. 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). :1–5.

The requirements of much larger file sizes, different storage formats, and immersive viewing conditions pose significant challenges to the goals of compressing VR content. At the same time, the great potential of deep learning to advance progress on the video compression problem has driven a significant research effort. Because of the high bandwidth requirements of VR, there has also been significant interest in the use of space-variant, foveated compression protocols. We have integrated these techniques to create an end-to-end deep learning video compression framework. A feature of our new compression model is that it dispenses with the need for expensive search-based motion prediction computations by using displaced frame differences. We also implement foveation in our learning based approach, by introducing a Foveation Generator Unit (FGU) that generates foveation masks which direct the allocation of bits, significantly increasing compression efficiency while making it possible to retain an impression of little to no additional visual loss given an appropriate viewing geometry. Our experiment results reveal that our new compression model, which we call the Foveated MOtionless VIdeo Codec (Foveated MOVI-Codec), is able to efficiently compress videos without computing motion, while outperforming foveated version of both H.264 and H.265 on the widely used UVG dataset and on the HEVC Standard Class B Test Sequences.

2023-01-06
Shaikh, Rizwan Ahmed, Sohaib Khan, Muhammad, Rashid, Imran, Abbas, Haidar, Naeem, Farrukh, Siddiqi, Muhammad Haroon.  2022.  A Framework for Human Error, Weaknesses, Threats & Mitigation Measures in an Airgapped Network. 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—8.

Many organizations process and store classified data within their computer networks. Owing to the value of data that they hold; such organizations are more vulnerable to targets from adversaries. Accordingly, the sensitive organizations resort to an ‘air-gap’ approach on their networks, to ensure better protection. However, despite the physical and logical isolation, the attackers have successfully manifested their capabilities by compromising such networks; examples of Stuxnet and Agent.btz in view. Such attacks were possible due to the successful manipulation of human beings. It has been observed that to build up such attacks, persistent reconnaissance of the employees, and their data collection often forms the first step. With the rapid integration of social media into our daily lives, the prospects for data-seekers through that platform are higher. The inherent risks and vulnerabilities of social networking sites/apps have cultivated a rich environment for foreign adversaries to cherry-pick personal information and carry out successful profiling of employees assigned with sensitive appointments. With further targeted social engineering techniques against the identified employees and their families, attackers extract more and more relevant data to make an intelligent picture. Finally, all the information is fused to design their further sophisticated attacks against the air-gapped facility for data pilferage. In this regard, the success of the adversaries in harvesting the personal information of the victims largely depends upon the common errors committed by legitimate users while on duty, in transit, and after their retreat. Such errors would keep on repeating unless these are aligned with their underlying human behaviors and weaknesses, and the requisite mitigation framework is worked out.

2023-04-28
Jain, Ashima, Tripathi, Khushboo, Jatain, Aman, Chaudhary, Manju.  2022.  A Game Theory based Attacker Defender Model for IDS in Cloud Security. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :190–194.

Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.

2023-05-12
Wang, Yushen, Yang, Guang, Sun, Tianwen, Yang, Kai, Zheng, Changling.  2022.  High-Performance, All-Scenario COVID-19 Pathogen Detection, Prevention, and Control System. 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE). :364–368.

Given the COVID-19 pandemic, this paper aims at providing a full-process information system to support the detection of pathogens for a large range of populations, satisfying the requirements of light weight, low cost, high concurrency, high reliability, quick response, and high security. The project includes functional modules such as sample collection, sample transfer, sample reception, laboratory testing, test result inquiry, pandemic analysis, and monitoring. The progress and efficiency of each collection point as well as the status of sample transfer, reception, and laboratory testing are all monitored in real time, in order to support the comprehensive surveillance of the pandemic situation and support the dynamic deployment of pandemic prevention resources in a timely and effective manner. Deployed on a cloud platform, this system can satisfy ultra-high concurrent data collection requirements with 20 million collections per day and a maximum of 5 million collections per hour, due to its advantages of high concurrency, elasticity, security, and manageability. This system has also been widely used in Jiangsu, Shaanxi provinces, for the prevention and control of COVID-19 pandemic. Over 100 million NAT data have been collected nationwide, providing strong informational support for scientific and reasonable formulation and execution of COVID-19 prevention plans.

2023-03-31
Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

2023-02-03
Halabi, Talal, Abusitta, Adel, Carvalho, Glaucio H.S., Fung, Benjamin C. M..  2022.  Incentivized Security-Aware Computation Offloading for Large-Scale Internet of Things Applications. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1–6.

With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.

2023-05-12
Huang, Song, Yang, Zhen, Zheng, Changyou, Wang, Yang, Du, Jinhu, Ding, Yixian, Wan, Jinyong.  2022.  Intellectual Property Right Confirmation System Oriented to Crowdsourced Testing Services. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :64–68.

In the process of crowdsourced testing service, the intellectual property of crowdsourced testing has been faced with problems such as code plagiarism, difficulties in confirming rights and unreliability of data. Blockchain is a decentralized, tamper-proof distributed ledger, which can help solve current problems. This paper proposes an intellectual property right confirmation system oriented to crowdsourced testing services, combined with blockchain, IPFS (Interplanetary file system), digital signature, code similarity detection to realize the confirmation of crowdsourced testing intellectual property. The performance test shows that the system can meet the requirements of normal crowdsourcing business as well as high concurrency situations.

2023-07-31
Wang, Weiming, Qian, Weifeng, Tao, Kai, Wei, Zitao, Zhang, Shihua, Xia, Yan, Chen, Yong.  2022.  Investigation of Potential FEC Schemes for 800G-ZR Forward Error Correction. 2022 Optical Fiber Communications Conference and Exhibition (OFC). :1—3.

With a record 400Gbps 100-piece-FPGA implementation, we investigate performance of the potential FEC schemes for OIF-800GZR. By comparing the power dissipation and correction threshold at 10−15 BER, we proposed the simplified OFEC for the 800G-ZR FEC.

2023-07-10
Kim, Hyun-Jin, Lee, Jonghoon, Park, Cheolhee, Park, Jong-Geun.  2022.  Network Anomaly Detection based on Domain Adaptation for 5G Network Security. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :976—980.

Currently, research on 5G communication is focusing increasingly on communication techniques. The previous studies have primarily focused on the prevention of communications disruption. To date, there has not been sufficient research on network anomaly detection as a countermeasure against on security aspect. 5g network data will be more complex and dynamic, intelligent network anomaly detection is necessary solution for protecting the network infrastructure. However, since the AI-based network anomaly detection is dependent on data, it is difficult to collect the actual labeled data in the industrial field. Also, the performance degradation in the application process to real field may occur because of the domain shift. Therefore, in this paper, we research the intelligent network anomaly detection technique based on domain adaptation (DA) in 5G edge network in order to solve the problem caused by data-driven AI. It allows us to train the models in data-rich domains and apply detection techniques in insufficient amount of data. For Our method will contribute to AI-based network anomaly detection for improving the security for 5G edge network.

2023-07-11
Hammar, Kim, Stadler, Rolf.  2022.  An Online Framework for Adapting Security Policies in Dynamic IT Environments. 2022 18th International Conference on Network and Service Management (CNSM). :359—363.

We present an online framework for learning and updating security policies in dynamic IT environments. It includes three components: a digital twin of the target system, which continuously collects data and evaluates learned policies; a system identification process, which periodically estimates system models based on the collected data; and a policy learning process that is based on reinforcement learning. To evaluate our framework, we apply it to an intrusion prevention use case that involves a dynamic IT infrastructure. Our results demonstrate that the framework automatically adapts security policies to changes in the IT infrastructure and that it outperforms a state-of-the-art method.

2023-06-23
Choi, Hankaram, Bae, Yongchul.  2022.  Prediction of encoding bitrate for each CRF value using video features and deep learning. 2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS&ISIS). :1–2.

In this paper, we quantify elements representing video features and we propose the bitrate prediction of compressed encoding video using deep learning. Particularly, to overcome disadvantage that we cannot predict bitrate of compression video by using Constant Rate Factor (CRF), we use deep learning. We can find element of video feature with relationship of bitrate when we compress the video, and we can confirm its possibility to find relationship through various deep learning techniques.

2023-03-31
Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.  2022.  Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.

Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.

Román, Roberto, Arjona, Rosario, López-González, Paula, Baturone, Iluminada.  2022.  A Quantum-Resistant Face Template Protection Scheme using Kyber and Saber Public Key Encryption Algorithms. 2022 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.

Considered sensitive information by the ISO/IEC 24745, biometric data should be stored and used in a protected way. If not, privacy and security of end-users can be compromised. Also, the advent of quantum computers demands quantum-resistant solutions. This work proposes the use of Kyber and Saber public key encryption (PKE) algorithms together with homomorphic encryption (HE) in a face recognition system. Kyber and Saber, both based on lattice cryptography, were two finalists of the third round of NIST post-quantum cryptography standardization process. After the third round was completed, Kyber was selected as the PKE algorithm to be standardized. Experimental results show that recognition performance of the non-protected face recognition system is preserved with the protection, achieving smaller sizes of protected templates and keys, and shorter execution times than other HE schemes reported in literature that employ lattices. The parameter sets considered achieve security levels of 128, 192 and 256 bits.

ISSN: 1617-5468

Chang, Liang.  2022.  The Research on Fingerprint Encryption Algorithm Based on The Error Correcting Code. 2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA). :258–262.

In this paper, an overall introduction of fingerprint encryption algorithm is made, and then a fingerprint encryption algorithm with error correction is designed by adding error correction mechanism. This new fingerprint encryption algorithm can produce stochastic key in the form of multinomial coefficient by using the binary system sequencer, encrypt fingerprint, and use the Lagrange difference value to restore the multinomial during authenticating. Due to using the cyclic redundancy check code to find out the most accurate key, the accuracy of this algorithm can be ensured. Experimental result indicates that the fuzzy vault algorithm with error correction can well realize the template protection, and meet the requirements of biological information security protection. In addition, it also indicates that the system's safety performance can be enhanced by chanaing the key's length.