Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-03-30
2023-02-17
[Anonymous].  Submitted.  Spam image detection based on convolutional block attention module.
Digital communication platforms, such as Gmail and Yahoo, are become essential in our professional and personal lives. In addition to the low cost of e-mails, they are fast. Despite the advantages of these tools, spammers try to send unsolicited e-mail, known as spam, daily. Recently, image spam, a new type of spam e-mail, is developed by spammers in order to avoid detection based on text-based spam filtering systems. Image spam contains more complex information as compared to text spam. For this reason, the detection of image spam is still a challenging task for researchers. Most of the developed image spam filtering systems are based on hand-crafted features and machine learning techniques, which are time-consuming and less efficient. In addition, these systems do not focus on the important features, which can have an impact on the detection process. In this paper, we apply the convolutional block attention module (CBAM) model in order to address the problem of image spam. The experiments are conducted on the available dataset, called image spam hunter (ISH). The results obtained are then compared, using the CBAM model, to other existing state-of-the-art methods. The results obtained have demonstrated that the convolutional block attention module (CBAM) is efficient for image spam detection.
2017-04-11
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

2023-04-28
Tang, Shibo, Wang, Xingxin, Gao, Yifei, Hu, Wei.  2022.  Accelerating SoC Security Verification and Vulnerability Detection Through Symbolic Execution. 2022 19th International SoC Design Conference (ISOCC). :207–208.
Model checking is one of the most commonly used technique in formal verification. However, the exponential scale state space renders exhaustive state enumeration inefficient even for a moderate System on Chip (SoC) design. In this paper, we propose a method that leverages symbolic execution to accelerate state space search and pinpoint security vulnerabilities. We automatically convert the hardware design to functionally equivalent C++ code and utilize the KLEE symbolic execution engine to perform state exploration through heuristic search. To reduce the search space, we symbolically represent essential input signals while making non-critical inputs concrete. Experiment results have demonstrated that our method can precisely identify security vulnerabilities at significantly lower computation cost.
2023-07-28
Dubchak, Lesia, Vasylkiv, Nadiia, Turchenko, Iryna, Komar, Myroslav, Nadvynychna, Tetiana, Volner, Rudolf.  2022.  Access Distribution to the Evaluation System Based on Fuzzy Logic. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :564—567.
In order to control users’ access to the information system, it is necessary to develop a security system that can work in real time and easily reconfigure. This problem can be solved using a fuzzy logic. In this paper the authors propose a fuzzy distribution system for access to the student assessment system, which takes into account the level of user access, identifier and the risk of attack during the request. This approach allows process fuzzy or incomplete information about the user and implement a sufficient level of confidential information protection.
2023-03-31
Ankita, D, Khilar, Rashmita, Kumar, M. Naveen.  2022.  Accuracy Analysis for Predicting Human Behaviour Using Deep Belief Network in Comparison with Support Vector Machine Algorithm. 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). :1–5.
To detect human behaviour and measure accuracy of classification rate. Materials and Methods: A novel deep belief network with sample size 10 and support vector machine with sample size of 10. It was iterated at different times predicting the accuracy percentage of human behaviour. Results: Human behaviour detection utilizing novel deep belief network 87.9% accuracy compared with support vector machine 87.0% accuracy. Deep belief networks seem to perform essentially better compared to support vector machines \$(\textbackslashmathrmp=0.55)(\textbackslashtextPiˆ0.05)\$. The deep belief algorithm in computer vision appears to perform significantly better than the support vector machine algorithm. Conclusion: Within this human behaviour detection novel deep belief network has more precision than support vector machine.
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.  2022.  Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
2023-01-06
Chandrashekhar, RV, Visumathi, J, Anandaraj, A. PeterSoosai.  2022.  Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
2023-03-03
Sikandar, Hira Shahzadi, Sikander, Usman, Anjum, Adeel, Khan, Muazzam A..  2022.  An Adversarial Approach: Comparing Windows and Linux Security Hardness Using Mitre ATT&CK Framework for Offensive Security. 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :022–027.
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
ISSN: 1949-4106
2023-03-31
Li, Yunchen, Luo, Da.  2022.  Adversarial Audio Detection Method Based on Transformer. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :77–82.
Speech recognition technology has been applied to all aspects of our daily life, but it faces many security issues. One of the major threats is the adversarial audio examples, which may tamper the recognition results of the acoustic speech recognition system (ASR). In this paper, we propose an adversarial detection framework to detect adversarial audio examples. The method is based on the transformer self-attention mechanism. Spectrogram features are extracted from the audio and divided into patches. Position information are embedded and then fed into transformer encoder. Experimental results show that the method achieves good performance with the detection accuracy of above 96.5% under the white-box attacks and blackbox attacks, and noisy circumstances. Even when detecting adversarial examples generated by the unknown attacks, it also achieves satisfactory results.
2023-08-03
Thai, Ho Huy, Hieu, Nguyen Duc, Van Tho, Nguyen, Hoang, Hien Do, Duy, Phan The, Pham, Van-Hau.  2022.  Adversarial AutoEncoder and Generative Adversarial Networks for Semi-Supervised Learning Intrusion Detection System. 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). :584–589.
As one of the defensive solutions against cyberattacks, an Intrusion Detection System (IDS) plays an important role in observing the network state and alerting suspicious actions that can break down the system. There are many attempts of adopting Machine Learning (ML) in IDS to achieve high performance in intrusion detection. However, all of them necessitate a large amount of labeled data. In addition, labeling attack data is a time-consuming and expensive human-labor operation, it makes existing ML methods difficult to deploy in a new system or yields lower results due to a lack of labels on pre-trained data. To address these issues, we propose a semi-supervised IDS model that leverages Generative Adversarial Networks (GANs) and Adversarial AutoEncoder (AAE), called a semi-supervised adversarial autoencoder (SAAE). Our SAAE experimental results on two public datasets for benchmarking ML-based IDS, including NF-CSE-CIC-IDS2018 and NF-UNSW-NB15, demonstrate the effectiveness of AAE and GAN in case of using only a small number of labeled data. In particular, our approach outperforms other ML methods with the highest detection rates in spite of the scarcity of labeled data for model training, even with only 1% labeled data.
ISSN: 2162-786X
Pardede, Hilman, Zilvan, Vicky, Ramdan, Ade, Yuliani, Asri R., Suryawati, Endang, Kusumowardani, Renni.  2022.  Adversarial Networks-Based Speech Enhancement with Deep Regret Loss. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS). :1–6.
Speech enhancement is often applied for speech-based systems due to the proneness of speech signals to additive background noise. While speech processing-based methods are traditionally used for speech enhancement, with advancements in deep learning technologies, many efforts have been made to implement them for speech enhancement. Using deep learning, the networks learn mapping functions from noisy data to clean ones and then learn to reconstruct the clean speech signals. As a consequence, deep learning methods can reduce what is so-called musical noise that is often found in traditional speech enhancement methods. Currently, one popular deep learning architecture for speech enhancement is generative adversarial networks (GAN). However, the cross-entropy loss that is employed in GAN often causes the training to be unstable. So, in many implementations of GAN, the cross-entropy loss is replaced with the least-square loss. In this paper, to improve the training stability of GAN using cross-entropy loss, we propose to use deep regret analytic generative adversarial networks (Dragan) for speech enhancements. It is based on applying a gradient penalty on cross-entropy loss. We also employ relativistic rules to stabilize the training of GAN. Then, we applied it to the least square and Dragan losses. Our experiments suggest that the proposed method improve the quality of speech better than the least-square loss on several objective quality metrics.
2023-08-04
Sinha, Arunesh.  2022.  AI and Security: A Game Perspective. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :393–396.
In this short paper, we survey some work at the intersection of Artificial Intelligence (AI) and security that are based on game theoretic considerations, and particularly focus on the author's (our) contribution in these areas. One half of this paper focuses on applications of game theoretic and learning reasoning for addressing security applications such as in public safety and wildlife conservation. In the second half, we present recent work that attacks the learning components of these works, leading to sub-optimal defense allocation. We finally end by pointing to issues and potential research problems that can arise due to data quality in the real world.
ISSN: 2155-2509
2023-05-12
Kostis, Ioannis - Aris, Karamitsios, Konstantinos, Kotrotsios, Konstantinos, Tsolaki, Magda, Tsolaki, Anthoula.  2022.  AI-Enabled Conversational Agents in Service of Mild Cognitive Impairment Patients. 2022 International Conference on Electrical and Information Technology (IEIT). :69–74.
Over the past two decades, several forms of non-intrusive technology have been deployed in cooperation with medical specialists in order to aid patients diagnosed with some form of mental, cognitive or psychological condition. Along with the availability and accessibility to applications offered by mobile devices, as well as the advancements in the field of Artificial Intelligence applications and Natural Language Processing, Conversational Agents have been developed with the objective of aiding medical specialists detecting those conditions in their early stages and monitoring their symptoms and effects on the cognitive state of the patient, as well as supporting the patient in their effort of mitigating those symptoms. Coupled with the recent advances in the the scientific field of machine and deep learning, we aim to explore the grade of applicability of such technologies into cognitive health support Conversational Agents, and their impact on the acceptability of such applications bytheir end users. Therefore, we conduct a systematic literature review, following a transparent and thorough process in order to search and analyze the bibliography of the past five years, focused on the implementation of Conversational Agents, supported by Artificial Intelligence technologies and in service of patients diagnosed with Mild Cognitive Impairment and its variants.
2023-03-31
Hata, Yuya, Hayashi, Naoki, Makino, Yusuke, Takada, Atsushi, Yamagoe, Kyoko.  2022.  Alarm Correlation Method Using Bayesian Network in Telecommunications Networks. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In the operation of information technology (IT) services, operators monitor the equipment-issued alarms, to locate the cause of a failure and take action. Alarms generate simultaneously from multiple devices with physical/logical connections. Therefore, if the time and location of the alarms are close to each other, it can be judged that the alarms are likely to be caused by the same event. In this paper, we propose a method that takes a novel approach by correlating alarms considering event units using a Bayesian network based on alarm generation time, generation place, and alarm type. The topology information becomes a critical decision element when doing the alarm correlation. However, errors may occur when topology information updates manually during failures or construction. Therefore, we show that event-by-event correlation with 100% accuracy is possible even if the topology information is 25% wrong by taking into location information other than topology information.
ISSN: 2576-8565
2023-08-03
Zhang, Lin, Fan, Fuyou, Dai, Yang, He, Chunlin.  2022.  Analysis and Research of Generative Adversarial Network in Anomaly Detection. 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). :1700–1703.
In recent years, generative adversarial networks (GAN) have become a research hotspot in the field of deep learning. Researchers apply them to the field of anomaly detection and are committed to effectively and accurately identifying abnormal images in practical applications. In anomaly detection, traditional supervised learning algorithms have limitations in training with a large number of known labeled samples. Therefore, the anomaly detection model of unsupervised learning GAN is the research object for discussion and research. Firstly, the basic principles of GAN are introduced. Secondly, several typical GAN-based anomaly detection models are sorted out in detail. Then by comparing the similarities and differences of each derivative model, discuss and summarize their respective advantages, limitations and application scenarios. Finally, the problems and challenges faced by GAN in anomaly detection are discussed, and future research directions are prospected.
2023-03-31
Du, Jikui.  2022.  Analysis of a Joint Data Security Architecture Integrating Artificial Intelligence and Cloud Computing in the Era of Big Data. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :988–991.
This article analyzes the analysis of the joint data security architecture that integrates artificial intelligence and cloud computing in the era of big data. The article discusses and analyzes the integrated applications of big data, artificial intelligence and cloud computing. As an important part of big data security protection, joint data security Protecting the technical architecture is not only related to the security of joint data in the big data era, but also has an important impact on the overall development of the data era. Based on this, the thesis takes the big data security and joint data security protection technical architecture as the research content, and through a simple explanation of big data security, it then conducts detailed research on the big data security and joint data security protection technical architecture from five aspects and thinking.
2023-07-14
Sivajyothi, Mithakala, T, Devi..  2022.  Analysis of Elliptic Curve Cryptography with AES for Protecting Data in Cloud with improved Time efficiency. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:573–577.
Aim: Data is secured in the cloud using Elliptic Curve Cryptography (ECC) compared with Advanced Encryption Standard (AES) with improved time efficiency. Materials and Methods: Encryption and decryption time is performed with files stored in the cloud. Protecting data with improved time efficiency is carried out using ECC where the number of samples (\textbackslashmathrmN=6) and AES (\textbackslashmathrmN=6), obtained using the G-power value of 80%. Results: Mean time of ECC is 0.1683 and RSA is 0.7517. Significant value for the proposed system is 0.643 (\textbackslashmathrmp \textgreater 0.05). Conclusion: Within the limit of study, ECC performs faster in less consumption time when compared to AES.
2023-01-13
Li, Baofeng, Zhai, Feng, Fu, Yilun, Xu, Bin.  2022.  Analysis of Network Security Protection of Smart Energy Meter. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :718–722.
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
2023-07-31
Yahya, Muhammad, Abdullah, Saleem, Almagrabi, Alaa Omran, Botmart, Thongchai.  2022.  Analysis of S-Box Based on Image Encryption Application Using Complex Fuzzy Credibility Frank Aggregation Operators. IEEE Access. 10:88858—88871.
This article is about a criterion based on credibility complex fuzzy set (CCFS) to study the prevailing substitution boxes (S-box) and learn their properties to find out their suitability in image encryption applications. Also these criterion has its own properties which is discussed in detailed and on the basis of these properties we have to find the best optimal results and decide the suitability of an S-box to image encryption applications. S-box is the only components which produces the confusion in the every block cipher in the formation of image encryption. So, for this first we have to convert the matrix having color image using the nonlinear components and also using the proposed algebraic structure of credibility complex fuzzy set to find the best S-box for image encryption based on its criterion. The analyses show that the readings of GRAY S-box is very good for image data.
2023-09-08
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
2023-02-17
Das, Lipsa, Ahuja, Laxmi, Pandey, Adesh.  2022.  Analysis of Twitter Spam Detection Using Machine Learning Approach. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :764–769.
Now a days there are many online social networks (OSN) which are very popular among Internet users and use this platform for finding new connections, sharing their activities and thoughts. Twitter is such social media platforms which is very popular among this users. Survey says, it has more than 310 million monthly users who are very active and post around 500+ million tweets in a day and this attracts, the spammer or cyber-criminal to misuse this platform for their malicious benefits. Product advertisement, phishing true users, pornography propagation, stealing the trending news, sharing malicious link to get the victims for making money are the common example of the activities of spammers. In Aug-2014, Twitter made public that 8.5% of its active Twitter users (monthly) that is approx. 23+ million users, who have automatically contacted their servers for regular updates. Thus for a spam free environment in twitter, it is greatly required to detect and filter these spammer from the legitimate users. Here in our research paper, effectiveness & features of twitter spam detection, various methods are summarized with their benefits and limitations are presented. [1]
2022-12-09
Thiagarajan, K., Dixit, Chandra Kumar, Panneerselvam, M., Madhuvappan, C.Arunkumar, Gadde, Samata, Shrote, Jyoti N.  2022.  Analysis on the Growth of Artificial Intelligence for Application Security in Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :6—12.
Artificial intelligence is a subfield of computer science that refers to the intelligence displayed by machines or software. The research has influenced the rapid development of smart devices that have a significant impact on our daily lives. Science, engineering, business, and medicine have all improved their prediction powers in order to make our lives easier in our daily tasks. The quality and efficiency of regions that use artificial intelligence has improved, as shown in this study. It successfully handles data organisation and environment difficulties, allowing for the development of a more solid and rigorous model. The pace of life is quickening in the digital age, and the PC Internet falls well short of meeting people’s needs. Users want to be able to get convenient network information services at any time and from any location
2023-03-17
Al-Kateb, Mohammed, Eltabakh, Mohamed Y., Al-Omari, Awny, Brown, Paul G..  2022.  Analytics at Scale: Evolution at Infrastructure and Algorithmic Levels. 2022 IEEE 38th International Conference on Data Engineering (ICDE). :3217–3220.
Data Analytics is at the core of almost all modern ap-plications ranging from science and finance to healthcare and web applications. The evolution of data analytics over the last decade has been dramatic - new methods, new tools and new platforms - with no slowdown in sight. This rapid evolution has pushed the boundaries of data analytics along several axis including scalability especially with the rise of distributed infrastructures and the Big Data era, and interoperability with diverse data management systems such as relational databases, Hadoop and Spark. However, many analytic application developers struggle with the challenge of production deployment. Recent experience suggests that it is difficult to deliver modern data analytics with the level of reliability, security and manageability that has been a feature of traditional SQL DBMSs. In this tutorial, we discuss the advances and innovations introduced at both the infrastructure and algorithmic levels, directed at making analytic workloads scale, while paying close attention to the kind of quality of service guarantees different technology provide. We start with an overview of the classical centralized analytical techniques, describing the shift towards distributed analytics over non-SQL infrastructures. We contrast such approaches with systems that integrate analytic functionality inside, above or adjacent to SQL engines. We also explore how Cloud platforms' virtualization capabilities make it easier - and cheaper - for end users to apply these new analytic techniques to their data. Finally, we conclude with the learned lessons and a vision for the near future.
ISSN: 2375-026X
2023-06-09
Choucri, Nazli, Agarwal, Gaurav.  2022.  Analytics for Cybersecurity Policy of Cyber-Physical Systems. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
Guidelines, directives, and policy statements are usually presented in “linear” text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like-even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as “data”, transforming text into a structured model, and generate network views of the text(s), that we then can use for vulnerability mapping, risk assessments and note control point analysis. For proof of concept we draw on NIST conceptual model and analysis of guidelines for smart grid cybersecurity, more than 600 pages of text.