Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2019-01-31
Nakamura, T., Nishi, H..  2018.  TMk-Anonymity: Perturbation-Based Data Anonymization Method for Improving Effectiveness of Secondary Use. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :3138–3143.

The recent emergence of smartphones, cloud computing, and the Internet of Things has brought about the explosion of data creation. By collating and merging these enormous data with other information, services that use information become more sophisticated and advanced. However, at the same time, the consideration of privacy violations caused by such merging is indispensable. Various anonymization methods have been proposed to preserve privacy. The conventional perturbation-based anonymization method of location data adds comparatively larger noise, and the larger noise makes it difficult to utilize the data effectively for secondary use. In this research, to solve these problems, we first clarified the definition of privacy preservation and then propose TMk-anonymity according to the definition.

2019-06-10
Karbab, ElMouatez Billah, Debbabi, Mourad.  2018.  ToGather: Automatic Investigation of Android Malware Cyber-Infrastructures. Proceedings of the 13th International Conference on Availability, Reliability and Security. :20:1-20:10.

The popularity of Android, not only in handsets but also in IoT devices, makes it a very attractive target for malware threats, which are actually expanding at a significant rate. The state-of-the-art in malware mitigation solutions mainly focuses on the detection of malicious Android apps using dynamic and static analysis features to segregate malicious apps from benign ones. Nevertheless, there is a small coverage for the Internet/network dimension of Android malicious apps. In this paper, we present ToGather, an automatic investigation framework that takes Android malware samples as input and produces insights about the underlying malicious cyber infrastructures. ToGather leverages state-of-the-art graph theory techniques to generate actionable, relevant and granular intelligence to mitigate the threat effects induced by the malicious Internet activity of Android malware apps. We evaluate ToGather on a large dataset of real malware samples from various Android families, and the obtained results are both interesting and promising.

2019-06-17
Marshall, Allen, Jahan, Sharmin, Gamble, Rose.  2018.  Toward Evaluating the Impact of Self-Adaptation on Security Control Certification. Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems. :149-160.

Certifying security controls is required for information systems that are either federally maintained or maintained by a US government contractor. As described in the NIST SP800-53, certified and accredited information systems are deployed with an acceptable security threat risk. Self-adaptive information systems that allow functional and decision-making changes to be dynamically configured at runtime may violate security controls increasing the risk of security threat to the system. Methods are needed to formalize the process of certification for security controls by expressing and verifying the functional and non-functional requirements to determine what risks are introduced through self-adaptation. We formally express the existence and behavior requirements of the mechanisms needed to guarantee the security controls' effectiveness using audit controls on program example. To reason over the risk of security control compliance given runtime self-adaptations, we use the KIV theorem prover on the functional requirements, extracting the verification concerns and workflow associated with the proof process. We augment the MAPE-K control loop planner with knowledge of the mechanisms that satisfy the existence criteria expressed by the security controls. We compare self-adaptive plans to assess their risk of security control violation prior to plan deployment.

2019-02-08
Grieco, Gustavo, Dinaburg, Artem.  2018.  Toward Smarter Vulnerability Discovery Using Machine Learning. Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. :48-56.

A Cyber Reasoning System (CRS) is designed to automatically find and exploit software vulnerabilities in complex software. To be effective, CRSs integrate multiple vulnerability detection tools (VDTs), such as symbolic executors and fuzzers. Determining which VDTs can best find bugs in a large set of target programs, and how to optimally configure those VDTs, remains an open and challenging problem. Current solutions are based on heuristics created by security analysts that rely on experience, intuition and luck. In this paper, we present Central Exploit Organizer (CEO), a proof-of-concept tool to optimize VDT selection. CEO uses machine learning to optimize the selection and configuration of the most suitable vulnerability detection tool. We show that CEO can predict the relative effectiveness of a given vulnerability detection tool, configuration, and initial input. The estimation accuracy presents an improvement between \$11%\$ and \$21%\$ over random selection. We are releasing CEO and our dataset as open source to encourage further research.

2019-05-08
Basu, S., Chua, Y. H. Victoria, Lee, M. Wah, Lim, W. G., Maszczyk, T., Guo, Z., Dauwels, J..  2018.  Towards a data-driven behavioral approach to prediction of insider-threat. 2018 IEEE International Conference on Big Data (Big Data). :4994–5001.

Insider threats pose a challenge to all companies and organizations. Identification of culprit after an attack is often too late and result in detrimental consequences for the organization. Majority of past research on insider threat has focused on post-hoc personality analysis of known insider threats to identify personality vulnerabilities. It has been proposed that certain personality vulnerabilities place individuals to be at risk to perpetuating insider threats should the environment and opportunity arise. To that end, this study utilizes a game-based approach to simulate a scenario of intellectual property theft and investigate behavioral and personality differences of individuals who exhibit insider-threat related behavior. Features were extracted from games, text collected through implicit and explicit measures, simultaneous facial expression recordings, and personality variables (HEXACO, Dark Triad and Entitlement Attitudes) calculated from questionnaire. We applied ensemble machine learning algorithms and show that they produce an acceptable balance of precision and recall. Our results showcase the possibility of harnessing personality variables, facial expressions and linguistic features in the modeling and prediction of insider-threat.

2019-03-18
Bhattacharjee, Shameek, Thakur, Aditya, Das, Sajal K..  2018.  Towards Fast and Semi-supervised Identification of Smart Meters Launching Data Falsification Attacks. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :173–185.

Compromised smart meters sending false power consumption data in Advanced Metering Infrastructure (AMI) may have drastic consequences on the smart grid»s operation. Most existing defense models only deal with electricity theft from individual customers (isolated attacks) using supervised classification techniques that do not offer scalable or real time solutions. Furthermore, the cyber and interconnected nature of AMIs can also be exploited by organized adversaries who have the ability to orchestrate simultaneous data falsification attacks after compromising several meters, and also have more complex goals than just electricity theft. In this paper, we first propose a real time semi-supervised anomaly based consensus correction technique that detects the presence and type of smart meter data falsification, and then performs a consensus correction accordingly. Subsequently, we propose a semi-supervised consensus based trust scoring model, that is able to identify the smart meters injecting false data. The main contribution of the proposed approach is to provide a practical framework for compromised smart meter identification that (i) is not supervised (ii) enables quick identification (iii) scales classification error rates better for larger sized AMIs; (iv) counters threats from both isolated and orchestrated attacks; and (v) simultaneously works for a variety of data falsification types. Extensive experimental validation using two real datasets from USA and Ireland, demonstrates the ability of our proposed method to identify compromised meters in near real time across different datasets.

2019-11-12
Katsini, Christina, Raptis, George E., Fidas, Christos, Avouris, Nikolaos.  2018.  Towards Gaze-Based Quantification of the Security of Graphical Authentication Schemes. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications. :17:1-17:5.

In this paper, we introduce a two-step method for estimating the strength of user-created graphical passwords based on the eye-gaze behaviour during password composition. First, the individuals' gaze patterns, represented by the unique fixations on each area of interest (AOI) and the total fixation duration per AOI, are calculated. Second, the gaze-based entropy of the individual is calculated. To investigate whether the proposed metric is a credible predictor of the password strength, we conducted two feasibility studies. Results revealed a strong positive correlation between the strength of the created passwords and the gaze-based entropy. Hence, we argue that the proposed gaze-based metric allows for unobtrusive prediction of the strength of the password a user is going to create and enables intervention to the password composition for helping users create stronger passwords.

2019-11-04
Serror, Martin, Henze, Martin, Hack, Sacha, Schuba, Marko, Wehrle, Klaus.  2018.  Towards In-Network Security for Smart Homes. Proceedings of the 13th International Conference on Availability, Reliability and Security. :18:1-18:8.

The proliferation of the Internet of Things (IoT) in the context of smart homes entails new security risks threatening the privacy and safety of end users. In this paper, we explore the design space of in-network security for smart home networks, which automatically complements existing security mechanisms with a rule-based approach, i. e., every IoT device provides a specification of the required communication to fulfill the desired services. In our approach, the home router as the central network component then enforces these communication rules with traffic filtering and anomaly detection to dynamically react to threats. We show that in-network security can be easily integrated into smart home networks based on existing approaches and thus provides additional protection for heterogeneous IoT devices and protocols. Furthermore, in-network security relieves users of difficult home network configurations, since it automatically adapts to the connected devices and services.

2019-09-26
Tang, Yiming, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Ahmed, Syed.  2018.  Towards Safe Refactoring for Intelligent Parallelization of Java 8 Streams. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. :206-207.

The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results towards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize parallel streams.

2019-06-17
Goman, Maksim.  2018.  Towards Unambiguous IT Risk Definition. Proceedings of the Central European Cybersecurity Conference 2018. :15:1-15:6.

The paper addresses the fundamental methodological problem of risk analysis and control in information technology (IT) – the definition of risk as a subject of interest. Based on analysis of many risk concepts, we provide a consistent definition that describes the phenomenon. The proposed terminology is sound in terms of system analysis principles and applicable to practical use in risk assessment and control. Implication to risk assessment methods were summarized.

2019-08-26
Hasircioglu, Burak, Pignolet, Yvonne-Anne, Sivanthi, Thanikesavan.  2018.  Transparent Fault Tolerance for Real-Time Automation Systems. Proceedings of the 1st International Workshop on Internet of People, Assistive Robots and Things. :7-12.

Developing software is hard. Developing software that is resilient and does not crash at the occurrence of unexpected inputs or events is even harder, especially with IoT devices and real-time requirements, e.g., due to interactions with human beings. Therefore, there is a need for a software architecture that helps software developers to build fault-tolerant software with as little pain and effort as possible. To this end, we have designed a fault tolerance framework for automation systems that lets developers be mostly oblivious to fault tolerance issues. Thus they can focus on the application logic encapsulated in (micro)services. That is, the developer only needs to specify the required fault tolerance level by description, not implementation. The fault tolerance aspects are transparent to the developer, as the framework takes care of them. This approach is particularly suited for the development for mixed-criticality systems, where different parts have very different and demanding functional and non-functional requirements. For such systems highly specialized developers are needed and removing the burden of fault tolerance results in faster time to market and safer and more dependable systems.

2019-09-09
Kumar, M., Bhandari, R., Rupani, A., Ansari, J. H..  2018.  Trust-Based Performance Evaluation of Routing Protocol Design with Security and QoS over MANET. 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE). :139-142.

Nowadays, The incorporation of different function of the network, as well as routing, administration, and security, is basic to the effective operation of a mobile circumstantial network these days, in MANET thought researchers manages the problems of QoS and security severally. Currently, each the aspects of security and QoS influence negatively on the general performance of the network once thought-about in isolation. In fact, it will influence the exceptionally operating of QoS and security algorithms and should influence the important and essential services needed within the MANET. Our paper outlines 2 accomplishments via; the accomplishment of security and accomplishment of quality. The direction towards achieving these accomplishments is to style and implement a protocol to suite answer for policy-based network administration, and methodologies for key administration and causing of IPsec in a very MANET.

2019-02-08
Ioini, N. E., Pahl, C..  2018.  Trustworthy Orchestration of Container Based Edge Computing Using Permissioned Blockchain. 2018 Fifth International Conference on Internet of Things: Systems, Management and Security. :147-154.

The need to process the verity, volume and velocity of data generated by today's Internet of Things (IoT) devices has pushed both academia and the industry to investigate new architectural alternatives to support the new challenges. As a result, Edge Computing (EC) has emerged to address these issues, by placing part of the cloud resources (e.g., computation, storage, logic) closer to the edge of the network, which allows faster and context dependent data analysis and storage. However, as EC infrastructures grow, different providers who do not necessarily trust each other need to collaborate in order serve different IoT devices. In this context, EC infrastructures, IoT devices and the data transiting the network all need to be subject to identity and provenance checks, in order to increase trust and accountability. Each device/data in the network needs to be identified and the provenance of its actions needs to be tracked. In this paper, we propose a blockchain container based architecture that implements the W3C-PROV Data Model, to track identities and provenance of all orchestration decisions of a business network. This architecture provides new forms of interaction between the different stakeholders, which supports trustworthy transactions and leads to a new decentralized interaction model for IoT based applications.

2019-03-15
Yazicigil, R. T., Nadeau, P., Richman, D., Juvekar, C., Vaidya, K., Chandrakasan, A. P..  2018.  Ultra-Fast Bit-Level Frequency-Hopping Transmitter for Securing Low-Power Wireless Devices. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). :176-179.

Current BLE transmitters are susceptible to selective jamming due to long dwell times in a channel. To mitigate these attacks, we propose physical-layer security through an ultra-fast bit-level frequency-hopping (FH) scheme by exploiting the frequency agility of bulk acoustic wave resonators (BAW). Here we demonstrate the first integrated bit-level FH transmitter (TX) that hops at 1$μ$s period and uses data-driven random dynamic channel selection to enable secure wireless communications with additional data encryption. This system consists of a time-interleaved BAW-based TX implemented in 65nm CMOS technology with 80MHz coverage in the 2.4GHz ISM band and a measured power consumption of 10.9mW from 1.1V supply.

Kim, D., Shin, D., Shin, D..  2018.  Unauthorized Access Point Detection Using Machine Learning Algorithms for Information Protection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1876-1878.

With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.

2018-10-26
Arzhakov, A. V..  2018.  Usage of game theory in the internet wide scan. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :5–8.

This article examines Usage of Game Theory in The Internet Wide Scan. There is compiled model of “Network Scanning” game. There is described process of players interaction in the coalition antagonistic and network games. The concept of target system's cost is suggested. Moreover, there is suggested its application in network scanning, particularly, when detecting honeypot/honeynet systems.

2019-02-14
Raghothaman, Mukund, Kulkarni, Sulekha, Heo, Kihong, Naik, Mayur.  2018.  User-Guided Program Reasoning Using Bayesian Inference. Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. :722-735.

Program analyses necessarily make approximations that often lead them to report true alarms interspersed with many false alarms. We propose a new approach to leverage user feedback to guide program analyses towards true alarms and away from false alarms. Our approach associates each alarm with a confidence value by performing Bayesian inference on a probabilistic model derived from the analysis rules. In each iteration, the user inspects the alarm with the highest confidence and labels its ground truth, and the approach recomputes the confidences of the remaining alarms given this feedback. It thereby maximizes the return on the effort by the user in inspecting each alarm. We have implemented our approach in a tool named Bingo for program analyses expressed in Datalog. Experiments with real users and two sophisticated analyses–-a static datarace analysis for Java programs and a static taint analysis for Android apps–-show significant improvements on a range of metrics, including false alarm rates and number of bugs found.

2019-03-15
Lin, W., Lin, H., Wang, P., Wu, B., Tsai, J..  2018.  Using Convolutional Neural Networks to Network Intrusion Detection for Cyber Threats. 2018 IEEE International Conference on Applied System Invention (ICASI). :1107-1110.

In practice, Defenders need a more efficient network detection approach which has the advantages of quick-responding learning capability of new network behavioural features for network intrusion detection purpose. In many applications the capability of Deep Learning techniques has been confirmed to outperform classic approaches. Accordingly, this study focused on network intrusion detection using convolutional neural networks (CNNs) based on LeNet-5 to classify the network threats. The experiment results show that the prediction accuracy of intrusion detection goes up to 99.65% with samples more than 10,000. The overall accuracy rate is 97.53%.

2019-03-06
Viet, Hung Nguyen, Van, Quan Nguyen, Trang, Linh Le Thi, Nathan, Shone.  2018.  Using Deep Learning Model for Network Scanning Detection. Proceedings of the 4th International Conference on Frontiers of Educational Technologies. :117-121.

In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.

2019-05-01
Hadj, M. A. El, Erradi, M., Khoumsi, A., Benkaouz, Y..  2018.  Validation and Correction of Large Security Policies: A Clustering and Access Log Based Approach. 2018 IEEE International Conference on Big Data (Big Data). :5330-5332.

In big data environments with big number of users and high volume of data, we need to manage the corresponding huge number of security policies. Due to the distributed management of these policies, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. The distributed systems guided by such security policies produce a huge number of access logs. Due to potential security breaches, the access logs may show the presence of non-allowed accesses. This may also be a consequence of conflicting rules in the security policies. In this paper, we present an ongoing work on developing an environment for verifying and correcting security policies. To make the approach efficient, an access log is used as input to determine suspicious parts of the policy that should be considered. The approach is also made efficient by clustering the policy and the access log and considering separately the obtained clusters. The clustering technique and the use of access log significantly reduces the complexity of the suggested approach, making it scalable for large amounts of data.

2019-01-31
Ouyang, Deqiang, Shao, Jie, Zhang, Yonghui, Yang, Yang, Shen, Heng Tao.  2018.  Video-Based Person Re-Identification via Self-Paced Learning and Deep Reinforcement Learning Framework. Proceedings of the 26th ACM International Conference on Multimedia. :1562–1570.

Person re-identification is an important task in video surveillance, focusing on finding the same person across different cameras. However, most existing methods of video-based person re-identification still have some limitations (e.g., the lack of effective deep learning framework, the robustness of the model, and the same treatment for all video frames) which make them unable to achieve better recognition performance. In this paper, we propose a novel self-paced learning algorithm for video-based person re-identification, which could gradually learn from simple to complex samples for a mature and stable model. Self-paced learning is employed to enhance video-based person re-identification based on deep neural network, so that deep neural network and self-paced learning are unified into one frame. Then, based on the trained self-paced learning, we propose to employ deep reinforcement learning to discard misleading and confounding frames and find the most representative frames from video pairs. With the advantage of deep reinforcement learning, our method can learn strategies to select the optimal frame groups. Experiments show that the proposed framework outperforms the existing methods on the iLIDS-VID, PRID-2011 and MARS datasets.

2019-01-21
Murillo, Andrés Felipe, Cómbita, Luis Francisco, Gonzalez, Andrea Calderón, Rueda, Sandra, Cardenas, Alvaro A., Quijano, Nicanor.  2018.  A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response. Proceedings of the 4th Annual Industrial Control System Security Workshop. :25–32.

The integration of modern information technologies with industrial control systems has created an enormous interest in the security of industrial control, however, given the cost, variety, and industry practices, it is hard for researchers to test and deploy security solutions in real-world systems. Industrial control testbeds can be used as tools to test security solutions before they are deployed, and in this paper we extend our previous work to develop open-source virtual industrial control testbeds where computing and networking components are emulated and virtualized, and the physical system is simulated through differential equations. In particular, we implement a nonlinear control system emulating a three-water tank with the associated sensors, PLCs, and actuators that communicate through an emulated network. In addition, we design unknown input observers (UIO) to not only detect that an attack is occurring, but also to identify the source of the malicious false data injections and mitigate its impact. Our system is available through Github to the academic community.

2019-01-31
Sandifort, Maguell L.T.L., Liu, Jianquan, Nishimura, Shoji, Hürst, Wolfgang.  2018.  VisLoiter+: An Entropy Model-Based Loiterer Retrieval System with User-Friendly Interfaces. Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. :505–508.

It is very difficult to fully automate the detection of loitering behavior in video surveillance, therefore humans are often required for monitoring. Alternatively, we could provide a list of potential loiterer candidates for a final yes/no judgment of a human operator. Our system, VisLoiter+, realizes this idea with a unique, user-friendly interface and by employing an entropy model for improved loitering analysis. Rather than using only frequency of appearance, we expand the loiter analysis with new methods measuring the amount of person movements across multiple camera views. The interface gives an overview of loiterer candidates to show their behavior at a glance, complemented by a lightweight video playback for further details about why a candidate was selected. We demonstrate that our system outperforms state-of-the-art solutions using real-life data sets.

2019-01-21
Nemati, H., Dagenais, M. R..  2018.  VM processes state detection by hypervisor tracing. 2018 Annual IEEE International Systems Conference (SysCon). :1–8.

The diagnosis of performance issues in cloud environments is a challenging problem, due to the different levels of virtualization, the diversity of applications and their interactions on the same physical host. Moreover, because of privacy, security, ease of deployment and execution overhead, an agent-less method, which limits its data collection to the physical host level, is often the only acceptable solution. In this paper, a precise host-based method, to recover wait state for the processes inside a given Virtual Machine (VM), is proposed. The virtual Process State Detection (vPSD) algorithm computes the state of processes through host kernel tracing. The state of a virtual Process (vProcess) is displayed in an interactive trace viewer (Trace Compass) for further inspection. Our proposed VM trace analysis algorithm has been open-sourced for further enhancements and for the benefit of other developers. Experimental evaluations were conducted using a mix of workload types (CPU, Disk, and Network), with different applications like Hadoop, MySQL, and Apache. vPSD, being based on host hypervisor tracing, brings a lower overhead (around 0.03%) as compared to other approaches.

2019-11-19
Wang, Jiye, Sun, Yuyan, Miao, Siwei, Shi, Zhiqiang, Sun, Limin.  2018.  Vulnerability and Protocol Association of Device Firmware in Power Grid. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). :259-263.

The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.