Biblio

Found 200 results

Filters: Keyword is Data analysis  [Clear All Filters]
2023-03-17
Al-Kateb, Mohammed, Eltabakh, Mohamed Y., Al-Omari, Awny, Brown, Paul G..  2022.  Analytics at Scale: Evolution at Infrastructure and Algorithmic Levels. 2022 IEEE 38th International Conference on Data Engineering (ICDE). :3217–3220.
Data Analytics is at the core of almost all modern ap-plications ranging from science and finance to healthcare and web applications. The evolution of data analytics over the last decade has been dramatic - new methods, new tools and new platforms - with no slowdown in sight. This rapid evolution has pushed the boundaries of data analytics along several axis including scalability especially with the rise of distributed infrastructures and the Big Data era, and interoperability with diverse data management systems such as relational databases, Hadoop and Spark. However, many analytic application developers struggle with the challenge of production deployment. Recent experience suggests that it is difficult to deliver modern data analytics with the level of reliability, security and manageability that has been a feature of traditional SQL DBMSs. In this tutorial, we discuss the advances and innovations introduced at both the infrastructure and algorithmic levels, directed at making analytic workloads scale, while paying close attention to the kind of quality of service guarantees different technology provide. We start with an overview of the classical centralized analytical techniques, describing the shift towards distributed analytics over non-SQL infrastructures. We contrast such approaches with systems that integrate analytic functionality inside, above or adjacent to SQL engines. We also explore how Cloud platforms' virtualization capabilities make it easier - and cheaper - for end users to apply these new analytic techniques to their data. Finally, we conclude with the learned lessons and a vision for the near future.
ISSN: 2375-026X
2023-02-03
Wibawa, Dikka Aditya Satria, Setiawan, Hermawan, Girinoto.  2022.  Anti-Phishing Game Framework Based on Extended Design Play Experience (DPE) Framework as an Educational Media. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :107–112.
The main objective of this research is to increase security awareness against phishing attacks in the education sector by teaching users about phishing URLs. The educational media was made based on references from several previous studies that were used as basic references. Development of antiphishing game framework educational media using the extended DPE framework. Participants in this study were vocational and college students in the technology field. The respondents included vocational and college students, each with as many as 30 respondents. To assess the level of awareness and understanding of phishing, especially phishing URLs, participants will be given a pre-test before playing the game, and after completing the game, the application will be given a posttest. A paired t-test was used to answer the research hypothesis. The results of data analysis show differences in the results of increasing identification of URL phishing by respondents before and after using educational media of the anti-phishing game framework in increasing security awareness against URL phishing attacks. More serious game development can be carried out in the future to increase user awareness, particularly in phishing or other security issues, and can be implemented for general users who do not have a background in technology.
2023-04-14
Garcia, Ailen B., Bongo, Shaina Mae C..  2022.  A Cyber Security Cognizance among College Teachers and Students in Embracing Online Education. 2022 8th International Conference on Information Management (ICIM). :116—119.
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
2023-01-05
Li, Yue, Zhang, Yunjuan.  2022.  Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.
2023-06-30
Shi, Er-Mei, Liu, Jia-Xi, Ji, Yuan-Ming, Chang, Liang.  2022.  DP-BEGAN: A Generative Model of Differential Privacy Algorithm. 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI). :168–172.
In recent years, differential privacy has gradually become a standard definition in the field of data privacy protection. Differential privacy does not need to make assumptions about the prior knowledge of privacy adversaries, so it has a more stringent effect than existing privacy protection models and definitions. This good feature has been used by researchers to solve the in-depth learning problem restricted by the problem of privacy and security, making an important breakthrough, and promoting its further large-scale application. Combining differential privacy with BEGAN, we propose the DP-BEGAN framework. The differential privacy is realized by adding carefully designed noise to the gradient of Gan model training, so as to ensure that Gan can generate unlimited synthetic data that conforms to the statistical characteristics of source data and does not disclose privacy. At the same time, it is compared with the existing methods on public datasets. The results show that under a certain privacy budget, this method can generate higher quality privacy protection data more efficiently, which can be used in a variety of data analysis tasks. The privacy loss is independent of the amount of synthetic data, so it can be applied to large datasets.
2023-07-13
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2023-01-20
Dey, Arnab, Chakraborty, Soham, Salapaka, Murti V..  2022.  An End-to-End Cyber-Physical Infrastructure for Smart Grid Control and Monitoring. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
In this article, we propose a generic cyber-physical framework, developed in our laboratory, for smart grid control and monitoring in real-time. Our framework is composed of four key elements: (1) system layer which embeds a physical or emulated power system network, (2) data analysis layer to execute real-time data-driven grid analysis algorithms, (3) backend layer with a generic data storage framework which supports multiple databases with functionally different architectures, and (4) visualization layer where multiple customized or commercially available user interfaces can be deployed concurrently for grid control and monitoring. These four layers are interlinked via bidirectional communication channels. Such a flexible and scalable framework provides a cohesive environment to enhance smart grid situational awareness. We demonstrate the utility of our proposed architecture with several case studies where we estimate a modified IEEE-33 bus distribution network topology entirely from synchrophasor measurements, without any prior knowledge of the grid network, and render the same on visualization platform. Three demonstrations are included with single and multiple system operators having complete and partial measurements.
2023-08-25
Kim, Jawon, Chang, Hangbae.  2022.  An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :611—613.
Insider threats are steadily increasing, and the damage is also enormous. To prevent insider threats, security solutions, such as DLP, SIEM, etc., are being steadily developed. However, they have limitations due to the high rate of false positives. In this paper, we propose a data analysis method and methodology for responding to a technology leak incident. The future study may be performed based on the proposed methodology.
2023-01-05
Meziani, Ahlem, Bourouis, Abdelhabib, Chebout, Mohamed Sedik.  2022.  Neutrosophic Data Analytic Hierarchy Process for Multi Criteria Decision Making: Applied to Supply Chain Risk Management. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1—6.
Today’s Supply Chains (SC) are engulfed in a maelstrom of risks which arise mainly from uncertain, contradictory, and incomplete information. A decision-making process is required in order to detect threats, assess risks, and implements mitigation methods to address these issues. However, Neutrosophic Data Analytic Hierarchy Process (NDAHP) allows for a more realistic reflection of real-world problems while taking into account all factors that lead to effective risk assessment for Multi Criteria Decision-Making (MCDM). The purpose of this paper consists of an implementation of the NDAHP for MCDM aiming to identifying, ranking, prioritizing and analyzing risks without considering SC’ expert opinions. To that end, we proceed, first, for selecting and analyzing the most 23 relevant risk indicators that have a significant impact on the SC considering three criteria: severity, occurrence, and detection. After that, the NDAHP method is implemented and showcased, on the selected risk indicators, throw an illustrative example. Finally, we discuss the usability and effectiveness of the suggested method for the SCRM purposes.
2023-03-31
Chapman, Jon, Venugopalan, Hari.  2022.  Open Source Software Computed Risk Framework. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). :172–175.
The increased dissemination of open source software to a broader audience has led to a proportional increase in the dissemination of vulnerabilities. These vulnerabilities are introduced by developers, some intentionally or negligently. In this paper, we work to quantity the relative risk that a given developer represents to a software project. We propose using empirical software engineering based analysis on the vast data made available by GitHub to create a Developer Risk Score (DRS) for prolific contributors on GitHub. The DRS can then be aggregated across a project as a derived vulnerability assessment, we call this the Computational Vulnerability Assessment Score (CVAS). The CVAS represents the correlation between the Developer Risk score across projects and vulnerabilities attributed to those projects. We believe this to be a contribution in trying to quantity risk introduced by specific developers across open source projects. Both of the risk scores, those for contributors and projects, are derived from an amalgamation of data, both from GitHub and outside GitHub. We seek to provide this risk metric as a force multiplier for the project maintainers that are responsible for reviewing code contributions. We hope this will lead to a reduction in the number of introduced vulnerabilities for projects in the Open Source ecosystem.
ISSN: 2766-3639
Alzarog, Jellalah, Almhishi, Abdalwart, Alsunousi, Abubaker, Abulifa, Tareg Abubaker, Eltarjaman, Wisam, Sati, Salem Omar.  2022.  POX Controller Evaluation Based On Tree Topology For Data Centers. 2022 International Conference on Data Analytics for Business and Industry (ICDABI). :67–71.
The Software Defined Networking (SDN) is a solution for Data Center Networks (DCN). This solution offers a centralized control that helps to simplify the management and reduce the big data issues of storage management and data analysis. This paper investigates the performance of deploying an SDN controller in DCN. The paper considers the network topology with a different number of hosts using the Mininet emulator. The paper evaluates the performance of DCN based on Python SDN controllers with a different number of hosts. This evaluation compares POX and RYU controllers as DCN solutions using the throughput, delay, overhead, and convergence time. The results show that the POX outperforms the RYU controller and is the best choice for DCN.
Habbak, Hany, Metwally, Khaled, Mattar, Ahmed Maher.  2022.  Securing Big Data: A Survey on Security Solutions. 2022 13th International Conference on Electrical Engineering (ICEENG). :145–149.
Big Data (BD) is the combination of several technologies which address the gathering, analyzing and storing of massive heterogeneous data. The tremendous spurt of the Internet of Things (IoT) and different technologies are the fundamental incentive behind this enduring development. Moreover, the analysis of this data requires high-performance servers for advanced and parallel data analytics. Thus, data owners with their limited capabilities may outsource their data to a powerful but untrusted environment, i.e., the Cloud. Furthermore, data analytic techniques performed on external cloud may arise various security intimidations regarding the confidentiality and the integrity of the aforementioned; transferred, analyzed, and stored data. To countermeasure these security issues and challenges, several techniques have been addressed. This survey paper aims to summarize and emphasize the security threats within Big Data framework, in addition, it is worth mentioning research work related to Big Data Analytics (BDA).
2023-04-28
Xiao, Wenfeng.  2022.  Research on applied strategies of business financial audit in the age of artificial intelligence. 2022 18th International Conference on Computational Intelligence and Security (CIS). :1–4.
Artificial intelligence (AI) was engendered by the rapid development of high and new technologies, which altered the environment of business financial audits and caused problems in recent years. As the pioneers of enterprise financial monitoring, auditors must actively and proactively adapt to the new audit environment in the age of AI. However, the performances of the auditors during the adaptation process are not so favorable. In this paper, methods such as data analysis and field research are used to conduct investigations and surveys. In the process of applying AI to the financial auditing of a business, a number of issues are discovered, such as auditors' underappreciation, information security risks, and liability risk uncertainty. On the basis of the problems, related suggestions for improvement are provided, including the cultivation of compound talents, the emphasis on the value of auditors, and the development of a mechanism for accepting responsibility.
2023-09-20
Dhalaria, Meghna, Gandotra, Ekta.  2022.  Android Malware Risk Evaluation Using Fuzzy Logic. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :341—345.
The static and dynamic malware analysis are used by industrialists and academics to understand malware capabilities and threat level. The antimalware industries calculate malware threat levels using different techniques which involve human involvement and a large number of resources and analysts. As malware complexity, velocity and volume increase, it becomes impossible to allocate so many resources. Due to this reason, it is projected that the number of malware apps will continue to rise, and that more devices will be targeted in order to commit various sorts of cybercrime. It is therefore necessary to develop techniques that can calculate the damage or threat posed by malware automatically as soon as it is identified. In this way, early warnings about zero-day (unknown) malware can assist in allocating resources for carrying out a close analysis of it as soon as it is identified. In this paper, a fuzzy modelling approach is described for calculating the potential risk of malicious programs through static malware analysis.
2022-04-22
Iqbal, Talha, Banna, Hasan Ul, Feliachi, Ali.  2021.  AI-Driven Security Constrained Unit Commitment Using Eigen Decomposition And Linear Shift Factors. 2021 North American Power Symposium (NAPS). :01—06.
Unit Commitment (UC) problem is one of the most fundamental constrained optimization problems in the planning and operation of electric power systems and electricity markets. Solving a large-scale UC problem requires a lot of computational effort which can be improved using data driven approaches. In practice, a UC problem is solved multiple times a day with only minor changes in the input data. Hence, this aspect can be exploited by using the historical data to solve the problem. In this paper, an Artificial Intelligence (AI) based approach is proposed to solve a Security Constrained UC problem. The proposed algorithm was tested through simulations on a 4-bus power system and satisfactory results were obtained. The results were compared with those obtained using IBM CPLEX MIQP solver.
2022-06-15
Tatar, Ekin Ecem, Dener, Murat.  2021.  Anomaly Detection on Bitcoin Values. 2021 6th International Conference on Computer Science and Engineering (UBMK). :249–253.
Bitcoin has received a lot of attention from investors, researchers, regulators, and the media. It is a known fact that the Bitcoin price usually fluctuates greatly. However, not enough scientific research has been done on these fluctuations. In this study, long short-term memory (LSTM) modeling from Recurrent Neural Networks, which is one of the deep learning methods, was applied on Bitcoin values. As a result of this application, anomaly detection was carried out in the values from the data set. With the LSTM network, a time-dependent representation of Bitcoin price can be captured, and anomalies can be selected. The factors that play a role in the formation of the model to be applied in the detection of anomalies with the experimental results were evaluated.
2022-08-10
Simsek, Ozlem Imik, Alagoz, Baris Baykant.  2021.  A Computational Intelligent Analysis Scheme for Optimal Engine Behavior by Using Artificial Neural Network Learning Models and Harris Hawk Optimization. 2021 International Conference on Information Technology (ICIT). :361—365.
Application of computational intelligence methods in data analysis and optimization problems can allow feasible and optimal solutions of complicated engineering problems. This study demonstrates an intelligent analysis scheme for determination of optimal operating condition of an internal combustion engine. For this purpose, an artificial neural network learning model is used to represent engine behavior based on engine data, and a metaheuristic optimization method is implemented to figure out optimal operating states of the engine according to the neural network learning model. This data analysis scheme is used for adjustment of optimal engine speed and fuel rate parameters to provide a maximum torque under Nitrous oxide emission constraint. Harris hawks optimization method is implemented to solve the proposed optimization problem. The solution of this optimization problem addresses eco-friendly enhancement of vehicle performance. Results indicate that this computational intelligent analysis scheme can find optimal operating regimes of an engine.
2022-05-23
Hu, Yuan, Wan, Long.  2021.  Construction of immersive architectural wisdom guiding environment based on virtual reality. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :1464–1467.
Construction of immersive architectural wisdom guiding environment based on virtual reality is studied in this paper. Emerging development of the computer smart systems have provided the engineers a novel solution for the platform construction. Network virtualization is currently the most unclear and controversial concept in the industry regarding the definition of virtualization subdivisions. To improve the current study, we use the VR system to implement the platform. The wisdom guiding environment is built through the virtual data modelling and the interactive connections. The platform is implemented through the software. The test on the data analysis accuracy and the interface optimization is conducted.
2022-02-07
Keyes, David Sean, Li, Beiqi, Kaur, Gurdip, Lashkari, Arash Habibi, Gagnon, Francois, Massicotte, Frédéric.  2021.  EntropLyzer: Android Malware Classification and Characterization Using Entropy Analysis of Dynamic Characteristics. 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS). :1–12.
The unmatched threat of Android malware has tremendously increased the need for analyzing prominent malware samples. There are remarkable efforts in static and dynamic malware analysis using static features and API calls respectively. Nonetheless, there is a void to classify Android malware by analyzing its behavior using multiple dynamic characteristics. This paper proposes EntropLyzer, an entropy-based behavioral analysis technique for classifying the behavior of 12 eminent Android malware categories and 147 malware families taken from CCCS-CIC-AndMal2020 dataset. This work uses six classes of dynamic characteristics including memory, API, network, logcat, battery, and process to classify and characterize Android malware. Results reveal that the entropy-based analysis successfully determines the behavior of all malware categories and most of the malware families before and after rebooting the emulator.
2022-11-18
Banasode, Praveen, Padmannavar, Sunita.  2021.  Evaluation of Performance for Big Data Security Using Advanced Cryptography Policy. 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS). 1:1—5.
The revolution caused by the advanced analysis features of Internet of Things and big data have made a big turnaround in the digital world. Data analysis is not only limited to collect useful data but also useful in analyzing information quickly. Therefore, most of the variants of the shared system based on the parallel structural model are explored simultaneously as the appropriate big data storage library stimulates researchers’ interest in the distributed system. Due to the emerging digital technologies, different groups such as healthcare facilities, financial institutions, e-commerce, food service and supply chain management generate a surprising amount of information. Although the process of statistical analysis is essential, it can cause significant security and privacy issues. Therefore, the analysis of data privacy protection is very important. Using the platform, technology should focus on providing Advanced Cryptography Policy (ACP). This research explores different security risks, evolutionary mechanisms and risks of privacy protection. It further recommends the post-statistical modern privacy protection act to manage data privacy protection in binary format, because it is kept confidential by the user. The user authentication program has already filed access restrictions. To maintain this purpose, everyone’s attitude is to achieve a changing identity. This article is designed to protect the privacy of users and propose a new system of restoration of controls.
2022-05-19
Zhang, Feng, Pan, Zaifeng, Zhou, Yanliang, Zhai, Jidong, Shen, Xipeng, Mutlu, Onur, Du, Xiaoyong.  2021.  G-TADOC: Enabling Efficient GPU-Based Text Analytics without Decompression. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :1679–1690.
Text analytics directly on compression (TADOC) has proven to be a promising technology for big data analytics. GPUs are extremely popular accelerators for data analytics systems. Unfortunately, no work so far shows how to utilize GPUs to accelerate TADOC. We describe G-TADOC, the first framework that provides GPU-based text analytics directly on compression, effectively enabling efficient text analytics on GPUs without decompressing the input data. G-TADOC solves three major challenges. First, TADOC involves a large amount of dependencies, which makes it difficult to exploit massive parallelism on a GPU. We develop a novel fine-grained thread-level workload scheduling strategy for GPU threads, which partitions heavily-dependent loads adaptively in a fine-grained manner. Second, in developing G-TADOC, thousands of GPU threads writing to the same result buffer leads to inconsistency while directly using locks and atomic operations lead to large synchronization overheads. We develop a memory pool with thread-safe data structures on GPUs to handle such difficulties. Third, maintaining the sequence information among words is essential for lossless compression. We design a sequence-support strategy, which maintains high GPU parallelism while ensuring sequence information. Our experimental evaluations show that G-TADOC provides 31.1× average speedup compared to state-of-the-art TADOC.
2022-04-20
Bhattacharjee, Arpan, Badsha, Shahriar, Sengupta, Shamik.  2021.  Personalized Privacy Preservation for Smart Grid. 2021 IEEE International Smart Cities Conference (ISC2). :1–7.
The integration of advanced information, communication and data analytic technologies has transformed the traditional grid into an intelligent bidirectional system that can automatically adapt its services for utilities or consumers' needs. However, this change raises new privacy-related challenges. Privacy leakage has become a severe issue in the grid paradigm as adversaries run malicious analytics to identify the system's internal insight or use it to interrupt grids' operation by identifying real-time demand-based supply patterns. As a result, current grid authorities require an integrated mechanism to improve the system's sensitive data's privacy preservation. To this end, we present a multilayered smart grid architecture by characterizing the privacy issues that occur during data sharing, aggregation, and publishing by individual grid end nodes. Based on it, we quantify the nodes preferred privacy requirements. We further introduce personalized differential privacy (PDP) scheme based on trust distance in our proposed framework to provide the system with the added benefit of a user-specific privacy guarantee to eliminate differential privacy's limitation that allows the same level of privacy for all data providers. Lastly, we conduct extensive experimental analysis on a real-world grid dataset to illustrate that our proposed method is efficient enough to provide privacy preservation on sensitive smart grid data.
2022-03-01
Alrubei, Subhi, Ball, Edward, Rigelsford, Jonathan.  2021.  Securing IoT-Blockchain Applications Through Honesty-Based Distributed Proof of Authority Consensus Algorithm. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.
Integrating blockchain into Internet of Things (IoT) systems can offer many advantages to users and organizations. It provides the IoT network with the capability to distribute computation over many devices and improves the network's security by enhancing information integrity, ensuring accountability, and providing a way to implement better access control. The consensus mechanism is an essential part of any IoT-blockchain platform. In this paper, a novel consensus mechanism based on Proof-of-Authority (PoA) and Proof-of-Work (PoW) is proposed. The security advantages provided by PoW have been realized, and its long confirmation time can be mitigated by combining it with PoA in a single consensus mechanism called Honesty-based Distributed Proof-of-Authority (HDPoA) via scalable work. The measured results of transaction confirmation time and power consumption, and the analyses of security aspects have shown that HDPoA is a suitable and secure protocol for deployment within blockchain-based IoT applications.
2022-06-09
Gupta, Ragini, Nahrstedt, Klara, Suri, Niranjan, Smith, Jeffrey.  2021.  SVAD: End-to-End Sensory Data Analysis for IoBT-Driven Platforms. 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). :903–908.
The rapid advancement of IoT technologies has led to its flexible adoption in battle field networks, known as Internet of Battlefield Things (IoBT) networks. One important application of IoBT networks is the weather sensory network characterized with a variety of weather, land and environmental sensors. This data contains hidden trends and correlations, needed to provide situational awareness to soldiers and commanders. To interpret the incoming data in real-time, machine learning algorithms are required to automate strategic decision-making. Existing solutions are not well-equipped to provide the fine-grained feedback to military personnel and cannot facilitate a scalable, end-to-end platform for fast unlabeled data collection, cleaning, querying, analysis and threats identification. In this work, we present a scalable end-to-end IoBT data driven platform for SVAD (Storage, Visualization, Anomaly Detection) analysis of heterogeneous weather sensor data. Our SVAD platform includes extensive data cleaning techniques to denoise efficiently data to differentiate data from anomalies and noise data instances. We perform comparative analysis of unsupervised machine learning algorithms for multi-variant data analysis and experimental evaluation of different data ingestion pipelines to show the ability of the SVAD platform for (near) real-time processing. Our results indicate impending turbulent weather conditions that can be detected by early anomaly identification and detection techniques.
2022-05-19
Rabbani, Mustafa Raza, Bashar, Abu, Atif, Mohd, Jreisat, Ammar, Zulfikar, Zehra, Naseem, Yusra.  2021.  Text mining and visual analytics in research: Exploring the innovative tools. 2021 International Conference on Decision Aid Sciences and Application (DASA). :1087–1091.
The aim of the study is to present an advanced overview and potential application of the innovative tools/software's/methods used for data visualization, text mining, scientific mapping, and bibliometric analysis. Text mining and data visualization has been a topic of research for several years for academic researchers and practitioners. With the advancement in technology and innovation in the data analysis techniques, there are many online and offline software tools available for text mining and visualisation. The purpose of this study is to present an advanced overview of latest, sophisticated, and innovative tools available for this purpose. The unique characteristic about this study is that it provides an overview with examples of the five most adopted software tools such as VOSviewer, Biblioshiny, Gephi, HistCite and CiteSpace in social science research. This study will contribute to the academic literature and will help the researchers and practitioners to apply these tools in future research to present their findings in a more scientific manner.