Biblio

Found 200 results

Filters: Keyword is Data analysis  [Clear All Filters]
2021-03-09
Liao, Q., Gu, Y., Liao, J., Li, W..  2020.  Abnormal transaction detection of Bitcoin network based on feature fusion. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:542—549.

Anomaly detection is one of the research hotspots in Bitcoin transaction data analysis. In view of the existing research that only considers the transaction as an isolated node when extracting features, but has not yet used the network structure to dig deep into the node information, a bitcoin abnormal transaction detection method that combines the node’s own features and the neighborhood features is proposed. Based on the formation mechanism of the interactive relationship in the transaction network, first of all, according to a certain path selection probability, the features of the neighbohood nodes are extracted by way of random walk, and then the node’s own features and the neighboring features are fused to use the network structure to mine potential node information. Finally, an unsupervised detection algorithm is used to rank the transaction points on the constructed feature set to find abnormal transactions. Experimental results show that, compared with the existing feature extraction methods, feature fusion improves the ability to detect abnormal transactions.

2021-04-27
Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

Yang, Y., Lu, K., Cheng, H., Fu, M., Li, Z..  2020.  Time-controlled Regular Language Search over Encrypted Big Data. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:1041—1045.

The rapid development of cloud computing and the arrival of the big data era make the relationship between users and cloud closer. Cloud computing has powerful data computing and data storage capabilities, which can ubiquitously provide users with resources. However, users do not fully trust the cloud server's storage services, so lots of data is encrypted and uploaded to the cloud. Searchable encryption can protect the confidentiality of data and provide encrypted data retrieval functions. In this paper, we propose a time-controlled searchable encryption scheme with regular language over encrypted big data, which provides flexible search pattern and convenient data sharing. Our solution allows users with data's secret keys to generate trapdoors by themselves. And users without data's secret keys can generate trapdoors with the help of a trusted third party without revealing the data owner's secret key. Our system uses a time-controlled mechanism to collect keywords queried by users and ensures that the querying user's identity is not directly exposed. The obtained keywords are the basis for subsequent big data analysis. We conducted a security analysis of the proposed scheme and proved that the scheme is secure. The simulation experiment and comparison of our scheme show that the system has feasible efficiency.

2020-12-28
Lee, H., Cho, S., Seong, J., Lee, S., Lee, W..  2020.  De-identification and Privacy Issues on Bigdata Transformation. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :514—519.

As the number of data in various industries and government sectors is growing exponentially, the `7V' concept of big data aims to create a new value by indiscriminately collecting and analyzing information from various fields. At the same time as the ecosystem of the ICT industry arrives, big data utilization is treatened by the privacy attacks such as infringement due to the large amount of data. To manage and sustain the controllable privacy level, there need some recommended de-identification techniques. This paper exploits those de-identification processes and three types of commonly used privacy models. Furthermore, this paper presents use cases which can be adopted those kinds of technologies and future development directions.

2021-01-22
Alghamdi, A. A., Reger, G..  2020.  Pattern Extraction for Behaviours of Multi-Stage Threats via Unsupervised Learning. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.
Detection of multi-stage threats such as Advanced Persistent Threats (APT) is extremely challenging due to their deceptive approaches. Sequential events of threats might look benign when performed individually or from different addresses. We propose a new unsupervised framework to identify patterns and correlations of malicious behaviours by analysing heterogeneous log-files. The framework consists of two main phases of data analysis to extract inner-behaviours of log-files and then the patterns of those behaviours over analysed files. To evaluate the framework we have produced a (publicly available) labelled version of the SotM43 dataset. Our results demonstrate that the framework can (i) efficiently cluster inner-behaviours of log-files with high accuracy and (ii) extract patterns of malicious behaviour and correlations between those patterns from real-world data.
2021-04-09
Peng, X., Hongmei, Z., Lijie, C., Ying, H..  2020.  Analysis of Computer Network Information Security under the Background of Big Data. 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA). :409—412.
In today's society, under the comprehensive arrival of the Internet era, the rapid development of technology has facilitated people's production and life, but it is also a “double-edged sword”, making people's personal information and other data subject to a greater threat of abuse. The unique features of big data technology, such as massive storage, parallel computing and efficient query, have created a breakthrough opportunity for the key technologies of large-scale network security situational awareness. On the basis of big data acquisition, preprocessing, distributed computing and mining and analysis, the big data analysis platform provides information security assurance services to the information system. This paper will discuss the security situational awareness in large-scale network environment and the promotion of big data technology in security perception.
2020-08-28
Kolomeets, Maxim, Chechulin, Andrey, Zhernova, Ksenia, Kotenko, Igor, Gaifulina, Diana.  2020.  Augmented reality for visualizing security data for cybernetic and cyberphysical systems. 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :421—428.
The paper discusses the use of virtual (VR) and augmented (AR) reality for visual analytics in information security. Paper answers two questions: “In which areas of information security visualization VR/AR can be useful?” and “What is the difference of the VR/AR from similar methods of visualization at the level of perception of information?”. The first answer is based on the investigation of information security areas and visualization models that can be used in VR/AR security visualization. The second answer is based on experiments that evaluate perception of visual components in VR.
2021-01-11
Lobo-Vesga, E., Russo, A., Gaboardi, M..  2020.  A Programming Framework for Differential Privacy with Accuracy Concentration Bounds. 2020 IEEE Symposium on Security and Privacy (SP). :411–428.
Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.
2021-03-29
Grundy, J..  2020.  Human-centric Software Engineering for Next Generation Cloud- and Edge-based Smart Living Applications. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :1—10.

Humans are a key part of software development, including customers, designers, coders, testers and end users. In this keynote talk I explain why incorporating human-centric issues into software engineering for next-generation applications is critical. I use several examples from our recent and current work on handling human-centric issues when engineering various `smart living' cloud- and edge-based software systems. This includes using human-centric, domain-specific visual models for non-technical experts to specify and generate data analysis applications; personality impact on aspects of software activities; incorporating end user emotions into software requirements engineering for smart homes; incorporating human usage patterns into emerging edge computing applications; visualising smart city-related data; reporting diverse software usability defects; and human-centric security and privacy requirements for smart living systems. I assess the usefulness of these approaches, highlight some outstanding research challenges, and briefly discuss our current work on new human-centric approaches to software engineering for smart living applications.

2021-04-27
Khalid, O., Senthilananthan, S..  2020.  A review of data analytics techniques for effective management of big data using IoT. 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). :1—10.
IoT and big data are energetic technology of the world for quite a time, and both of these have become a necessity. On the one side where IoT is used to connect different objectives via the internet, the big data means having a large number of the set of structured, unstructured, and semi-structured data. The device used for processing based on the tools used. These tools help provide meaningful information used for effective management in different domains. Some of the commonly faced issues with the inadequate about the technologies are related to data privacy, insufficient analytical capabilities, and this issue is faced by in different domains related to the big data. Data analytics tools help discover the pattern of data and consumer preferences which is resulting in better decision making for the organizations. The major part of this work is to review different types of data analytics techniques for the effective management of big data using IoT. For the effective management of the ABD solution collection, analysis and control are used as the components. Each of the ingredients is described to find an effective way to manage big data. These components are considered and used in the validation criteria. The solution of effective data management is a stage towards the management of big data in IoT devices which will help the user to understand different types of elements of data management.
2021-02-01
Zhang, Y., Liu, Y., Chung, C.-L., Wei, Y.-C., Chen, C.-H..  2020.  Machine Learning Method Based on Stream Homomorphic Encryption Computing. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1–2.
This study proposes a machine learning method based on stream homomorphic encryption computing for improving security and reducing computational time. A case study of mobile positioning based on k nearest neighbors ( kNN) is selected to evaluate the proposed method. The results showed the proposed method can save computational resources than others.
2020-11-20
Demjaha, A., Caulfield, T., Sasse, M. Angela, Pym, D..  2019.  2 Fast 2 Secure: A Case Study of Post-Breach Security Changes. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :192—201.
A security breach often makes companies react by changing their attitude and approach to security within the organization. This paper presents an in-depth case study of post-breach security changes made by a company and the consequences of those changes. We employ the principles of participatory action research and humble inquiry to conduct a long-term study with employee interviews while embedded in the organization's security division. Despite an extremely high level of financial investment in security, and consistent attention and involvement from the board, the interviews indicate a significant level of friction between employees and security. In the main themes that emerged from our data analysis, a number of factors shed light on the friction: fear of another breach leading to zero risk appetite, impossible security controls making non-compliance a norm, security theatre underminining the purpose of security policies, employees often trading-off security with productivity, and as such being treated as children in detention rather than employees trying to finish their paid jobs. This paper shows that post-breach security changes can be complex and sometimes risky due to emotions often being involved. Without an approach considerate of how humans and security interact, even with high financial investment, attempts to change an organization's security behaviour may be ineffective.
2020-08-07
Smith, Gary.  2019.  Artificial Intelligence and the Privacy Paradox of Opportunity, Big Data and The Digital Universe. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :150—153.
Artificial Intelligence (AI) can and does use individual's data to make predictions about their wants, their needs, their influences on them and predict what they could do. The use of individual's data naturally raises privacy concerns. This article focuses on AI, the privacy issue against the backdrop of the endless growth of the Digital Universe where Big Data, AI, Data Analytics and 5G Technology live and grow in The Internet of Things (IoT).
2019-09-23
Zheng, N., Alawini, A., Ives, Z. G..  2019.  Fine-Grained Provenance for Matching ETL. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :184–195.
Data provenance tools capture the steps used to produce analyses. However, scientists must choose among workflow provenance systems, which allow arbitrary code but only track provenance at the granularity of files; provenance APIs, which provide tuple-level provenance, but incur overhead in all computations; and database provenance tools, which track tuple-level provenance through relational operators and support optimization, but support a limited subset of data science tasks. None of these solutions are well suited for tracing errors introduced during common ETL, record alignment, and matching tasks - for data types such as strings, images, etc. Scientists need new capabilities to identify the sources of errors, find why different code versions produce different results, and identify which parameter values affect output. We propose PROVision, a provenance-driven troubleshooting tool that supports ETL and matching computations and traces extraction of content within data objects. PROVision extends database-style provenance techniques to capture equivalences, support optimizations, and enable selective evaluation. We formalize our extensions, implement them in the PROVision system, and validate their effectiveness and scalability for common ETL and matching tasks.
2020-02-17
Rodriguez, Ariel, Okamura, Koji.  2019.  Generating Real Time Cyber Situational Awareness Information Through Social Media Data Mining. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:502–507.
With the rise of the internet many new data sources have emerged that can be used to help us gain insights into the cyber threat landscape and can allow us to better prepare for cyber attacks before they happen. With this in mind, we present an end to end real time cyber situational awareness system which aims to efficiently retrieve security relevant information from the social networking site Twitter.com. This system classifies and aggregates the data retrieved and provides real time cyber situational awareness information based on sentiment analysis and data analytics techniques. This research will assist security analysts to evaluate the level of cyber risk in their organization and proactively take actions to plan and prepare for potential attacks before they happen as well as contribute to the field through a cybersecurity tweet dataset.
2020-01-21
Novikova, Evgenia, Bekeneva, Yana, Shorov, Andrey.  2019.  The Location-Centric Approach to Employee's Interaction Pattern Detection. 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :373–378.
The task of the insider threat detection is one of the most sophisticated problems of the information security. The analysis of the logs of the access control system may reveal on how employees move and interact providing thus better understanding on how personnel observe security policies and established business processes. The paper presents an approach to the detection of the location-centric employees' interaction patterns. The authors propose the formal definition of the interaction patterns and present the visualization-driven technique to the extraction of the patterns from the data when any prior information about existing interaction routine and procedures is not available. The proposed approach is demonstrated on the data set provided within VAST MiniChallenge-2 2016 contest.
2020-08-24
Cuzzocrea, Alfredo, Damiani, Ernesto.  2019.  Making the Pedigree to Your Big Data Repository: Innovative Methods, Solutions, and Algorithms for Supporting Big Data Privacy in Distributed Settings via Data-Driven Paradigms. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 2:508–516.
Starting from our previous research where we in- troduced a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings, in this paper we further and significantly extend our past research contributions, and provide several novel contributions that complement our previous work in the investigated research field. Our proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the “pedigree” of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so- called Data-dRIven aggregate-PROvenance privacy-preserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest. Extensions and discussion on main motivations and principles of our proposed research, two relevant case studies that clearly state the need-for and covered (related) properties of supporting privacy- preserving management and analytics of big data in modern distributed systems, and an experimental assessment and analysis of our proposed DRIPROM framework are the major results of this paper.
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-03-18
Camera, Giancarlo, Baglietto, Pierpaolo, Maresca, Massimo.  2019.  A Platform for Private and Controlled Spreadsheet Objects Sharing. 2019 IEEE 23rd International Enterprise Distributed Object Computing Conference (EDOC). :67–76.
Spreadsheets are widely used in industries for tabular data analysis, visualization and storage. Users often exchange spreadsheets' semi-structured data to collaborative analyze them. Recently, office suites integrated a software module that enables collaborative authoring of office files, including spreadsheets, to facilitate the sharing process. Typically spreadsheets collaborative authoring applications, like Google Sheets or Excel online, need to delocalize the entire file in public cloud storage servers. This choice is not secure for enterprise use because it exposes shared content to the risk of third party access. Moreover, available platforms usually provide coarse grained spreadsheet file sharing, where collaborators have access to all data stored inside a workbook and to all the spreadsheets' formulas used to manipulate those data. This approach limits users' possibilities to disclose only a small portion of tabular data and integrate data coming from different sources (spreadsheets or software platforms). For these reasons enterprise users prefer to control fine grained confidential data exchange and their updates manually through copy, paste, attach-to-email, extract-from-email operations. However unsupervised data sharing and circulation often leads to errors or, at the very least, to inconsistencies, data losses, and proliferation of multiple copies. We propose a model that gives business users a different level of spreadsheet data sharing control, privacy and management. Our approach enables collaborative analytics of tabular data focusing on fine grained spreadsheet data sharing instead of coarse grained file sharing. This solution works with a platform that implements an end to end encrypted protocol for sensitive data sharing that prevents third party access to confidential content. Data are never shared into public clouds but they are transferred encrypted among the administrative domains of collaborators. In this paper we describe the model and the implemented system that enable our solution. We focus on two enterprise use cases we implemented describing how we deployed our platform to speed up and optimize industry processes that involve spreadsheet usage.
2020-07-30
He, Yongzhong, Zhao, Xiaojuan, Wang, Chao.  2019.  Privacy Mining of Large-scale Mobile Usage Data. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :81—86.
While enjoying the convenience brought by mobile phones, users have been exposed to high risk of private information leakage. It is known that many applications on mobile devices read private data and send them to remote servers. However how, when and in what scale the private data are leaked are not investigated systematically in the real-world scenario. In this paper, a framework is proposed to analyze the usage data from mobile devices and the traffic data from the mobile network and make a comprehensive privacy leakage detection and privacy inference mining on a large scale of realworld mobile data. Firstly, this paper sets up a training dataset and trains a privacy detection model on mobile traffic data. Then classical machine learning tools are used to discover private usage patterns. Based on our experiments and data analysis, it is found that i) a large number of private information is transmitted in plaintext, and even passwords are transmitted in plaintext by some applications, ii) more privacy types are leaked in Android than iOS, while GPS location is the most leaked privacy in both Android and iOS system, iii) the usage pattern is related to mobile device price. Through our experiments and analysis, it can be concluded that mobile privacy leakage is pervasive and serious.
2020-03-16
Ullah, Faheem, Ali Babar, M..  2019.  QuickAdapt: Scalable Adaptation for Big Data Cyber Security Analytics. 2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS). :81–86.
Big Data Cyber Security Analytics (BDCA) leverages big data technologies for collecting, storing, and analyzing a large volume of security events data to detect cyber-attacks. Accuracy and response time, being the most important quality concerns for BDCA, are impacted by changes in security events data. Whilst it is promising to adapt a BDCA system's architecture to the changes in security events data for optimizing accuracy and response time, it is important to consider large search space of architectural configurations. Searching a large space of configurations for potential adaptation incurs an overwhelming adaptation time, which may cancel the benefits of adaptation. We present an adaptation approach, QuickAdapt, to enable quick adaptation of a BDCA system. QuickAdapt uses descriptive statistics (e.g., mean and variance) of security events data and fuzzy rules to (re) compose a system with a set of components to ensure optimal accuracy and response time. We have evaluated QuickAdapt for a distributed BDCA system using four datasets. Our evaluation shows that on average QuickAdapt reduces adaptation time by 105× with a competitive adaptation accuracy of 70% as compared to an existing solution.
2020-12-11
Kumar, S., Vasthimal, D. K..  2019.  Raw Cardinality Information Discovery for Big Datasets. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :200—205.
Real-time discovery of all different types of unique attributes within unstructured data is a challenging problem to solve when dealing with multiple petabytes of unstructured data volume everyday. Popular discovery solutions such as the creation of offline jobs to uniquely identify attributes or running aggregation queries on raw data sets limits real time discovery use-cases and often results into poor resource utilization. The discovery information must be treated as a parallel problem to just storing raw data sets efficiently onto back-end big data systems. Solving the discovery problem by creating a parallel discovery data store infrastructure has multiple benefits as it allows such to channel the actual search queries against the raw data set in much more funneled manner instead of being widespread across the entire data sets. Such focused search queries and data separation are far more performant and requires less compute and memory footprint.
2020-02-17
Liu, Xiaobao, Wu, Qinfang, Sun, Jinhua, Xu, Xia, Wen, Yifan.  2019.  Research on Self-Healing Technology for Faults of Intelligent Distribution Network Communication System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1404–1408.
The intelligent power communication network is closely connected with the power system, and carries the data transmission and intelligent decision in a series of key services in the power system, which is an important guarantee for the smart power service. The self-healing control (SHC) of the distribution network monitors the data of each device and node in the distribution network in real time, simulates and analyzes the data, and predicts the hidden dangers in the normal operation of the distribution network. Control, control strategies such as correcting recovery and troubleshooting when abnormal or fault conditions occur, reducing human intervention, enabling the distribution network to change from abnormal operating state to normal operating state in time, preventing event expansion and reducing the impact of faults on the grid and users.
2020-05-11
Kenarangi, Farid, Partin-Vaisband, Inna.  2019.  Security Network On-Chip for Mitigating Side-Channel Attacks. 2019 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP). :1–6.
Hardware security is a critical concern in design and fabrication of integrated circuits (ICs). Contemporary hardware threats comprise tens of advance invasive and non-invasive attacks for compromising security of modern ICs. Numerous attack-specific countermeasures against the individual threats have been proposed, trading power, area, speed, and design complexity of a system for security. These typical overheads combined with strict performance requirements in advanced technology nodes and high complexity of modern ICs often make the codesign of multiple countermeasures impractical. In this paper, on-chip distribution networks are exploited for detecting those hardware security threats that require non-invasive, yet physical interaction with an operating device-under-attack (e.g., measuring equipment for collecting sensitive information in side-channel attacks). With the proposed approach, the effect of the malicious physical interference with the device-under-attack is captured in the form of on-chip voltage variations and utilized for detecting malicious activity in the compromised device. A machine learning (ML) security IC is trained to predict system security based on sensed variations of signals within on-chip distribution networks. The trained ML ICs are distributed on-chip, yielding a robust and high-confidence security network on-chip. To halt an active attack, a variety of desired counteractions can be executed in a cost-effective manner upon the attack detection. The applicability and effectiveness of these security networks is demonstrated in this paper with respect to power, timing, and electromagnetic analysis attacks.
2020-08-28
Huang, Angus F.M., Chi-Wei, Yang, Tai, Hsiao-Chi, Chuan, Yang, Huang, Jay J.C., Liao, Yu-Han.  2019.  Suspicious Network Event Recognition Using Modified Stacking Ensemble Machine Learning. 2019 IEEE International Conference on Big Data (Big Data). :5873—5880.
This study aims to detect genuine suspicious events and false alarms within a dataset of network traffic alerts. The rapid development of cloud computing and artificial intelligence-oriented automatic services have enabled a large amount of data and information to be transmitted among network nodes. However, the amount of cyber-threats, cyberattacks, and network intrusions have increased in various domains of network environments. Based on the fields of data science and machine learning, this paper proposes a series of solutions involving data preprocessing, exploratory data analysis, new features creation, features selection, ensemble learning, models construction, and verification to identify suspicious network events. This paper proposes a modified form of stacking ensemble machine learning which includes AdaBoost, Neural Networks, Random Forest, LightGBM, and Extremely Randomised Trees (Extra Trees) to realise a high-performance classification. A suspicious network event recognition dataset for a security operations centre, which uses real network log observations from the 2019 IEEE BigData Cup Challenge, is used as an experimental dataset. This paper investigates the possibility of integrating big-data analytics, machine learning, and data science to improve intelligent cybersecurity.