Biblio
Recent technological advancement demands organizations to have measures in place to manage their Information Technology (IT) systems. Enterprise Architecture Frameworks (EAF) offer companies an efficient technique to manage their IT systems aligning their business requirements with effective solutions. As a result, experts have developed multiple EAF's such as TOGAF, Zachman, MoDAF, DoDAF, SABSA to help organizations to achieve their objectives by reducing the costs and complexity. These frameworks however, concentrate mostly on business needs lacking holistic enterprise-wide security practices, which may cause enterprises to be exposed for significant security risks resulting financial loss. This study focuses on evaluating business capabilities in TOGAF, NIST, COBIT, MoDAF, DoDAF, SABSA, and Zachman, and identify essential security requirements in TOGAF, SABSA and COBIT19 frameworks by comparing their resiliency processes, which helps organization to easily select applicable framework. The study shows that; besides business requirements, EAF need to include precise cybersecurity guidelines aligning EA business strategies. Enterprises now need to focus more on building resilient approach, which is beyond of protection, detection and prevention. Now enterprises should be ready to withstand against the cyber-attacks applying relevant cyber resiliency approach improving the way of dealing with impacts of cybersecurity risks.
This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.
Cybersecurity community is slowly leveraging Machine Learning (ML) to combat ever evolving threats. One of the biggest drivers for successful adoption of these models is how well domain experts and users are able to understand and trust their functionality. As these black-box models are being employed to make important predictions, the demand for transparency and explainability is increasing from the stakeholders.Explanations supporting the output of ML models are crucial in cyber security, where experts require far more information from the model than a simple binary output for their analysis. Recent approaches in the literature have focused on three different areas: (a) creating and improving explainability methods which help users better understand the internal workings of ML models and their outputs; (b) attacks on interpreters in white box setting; (c) defining the exact properties and metrics of the explanations generated by models. However, they have not covered, the security properties and threat models relevant to cybersecurity domain, and attacks on explainable models in black box settings.In this paper, we bridge this gap by proposing a taxonomy for Explainable Artificial Intelligence (XAI) methods, covering various security properties and threat models relevant to cyber security domain. We design a novel black box attack for analyzing the consistency, correctness and confidence security properties of gradient based XAI methods. We validate our proposed system on 3 security-relevant data-sets and models, and demonstrate that the method achieves attacker's goal of misleading both the classifier and explanation report and, only explainability method without affecting the classifier output. Our evaluation of the proposed approach shows promising results and can help in designing secure and robust XAI methods.
Experimentation focused on assessing the value of complex visualisation approaches when compared with alternative methods for data analysis is challenging. The interaction between participant prior knowledge and experience, a diverse range of experimental or real-world data sets and a dynamic interaction with the display system presents challenges when seeking timely, affordable and statistically relevant experimentation results. This paper outlines a hybrid approach proposed for experimentation with complex interactive data analysis tools, specifically for computer network traffic analysis. The approach involves a structured survey completed after free engagement with the software platform by expert participants. The survey captures objective and subjective data points relating to the experience with the goal of making an assessment of software performance which is supported by statistically significant experimental results. This work is particularly applicable to field of network analysis for cyber security and also military cyber operations and intelligence data analysis.
Based on the analysis of the difficulties and pain points of privacy protection in the opening and sharing of government data, this paper proposes a new method for intelligent discovery and protection of structured and unstructured privacy data. Based on the improvement of the existing government data masking process, this method introduces the technologies of NLP and machine learning, studies the intelligent discovery of sensitive data, the automatic recommendation of masking algorithm and the full automatic execution following the improved masking process. In addition, the dynamic masking and static masking prototype with text and database as data source are designed and implemented with agent-based intelligent masking middleware. The results show that the recognition range and protection efficiency of government privacy data, especially government unstructured text have been significantly improved.
Analyzing multi-dimensional geospatial data is difficult and immersive analytics systems are used to visualize geospatial data and models. There is little previous work evaluating when immersive and non-immersive visualizations are the most suitable for data analysis and more research is needed.