Biblio

Found 1221 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2020-03-02
Ullah, Rehmat, Ur Rehman, Muhammad Atif, Kim, Byung-Seo, Sonkoly, Balázs, Tapolcai, János.  2019.  On Pending Interest Table in Named Data Networking based Edge Computing: The Case of Mobile Augmented Reality. 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN). :263–265.
Future networks require fast information response time, scalable content distribution, security and mobility. In order to enable future Internet many key enabling technologies have been proposed such as Edge computing (EC) and Named Data Networking (NDN). In EC substantial compute and storage resources are placed at the edge of the network, in close proximity to end users. Similarly, NDN provides an alternative to traditional host centric IP architecture which seems a perfect candidate for distributed computation. Although NDN with EC seems a promising approach for enabling future Internet, it can cause various challenges such as expiry time of the Pending Interest Table (PIT) and non-trivial computation of the edge node. In this paper we discuss the expiry time and non-trivial computation in NDN based EC. We argue that if NDN is integrated in EC, then the PIT expiry time will be affected in relation with the processing time on the edge node. Our analysis shows that integrating NDN in EC without considering PIT expiry time may result in the degradation of network performance in terms of Interest Satisfaction Rate.
2020-08-17
Garg, Hittu, Dave, Mayank.  2019.  Securing User Access at IoT Middleware Using Attribute Based Access Control. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
IoT middleware is an additional layer between IoT devices and the cloud applications that reduces computation and data handling on the cloud. In a typical IoT system model, middleware primarily connects to different IoT devices via IoT gateway. Device data stored on middleware is sensitive and private to a user. Middleware must have built-in mechanisms to address these issues, as well as the implementation of user authentication and access control. This paper presents the current methods used for access control on middleware and introduces Attribute-based encryption (ABE) on middleware for access control. ABE combines access control with data encryption for ensuring the integrity of data. In this paper, we propose Ciphertext-policy attribute-based encryption, abbreviated CP-ABE scheme on the middleware layer in the IoT system architecture for user access control. The proposed scheme is aimed to provide security and efficiency while reducing complexity on middleware. We have used the AVISPA tool to strengthen the proposed scheme.
2020-04-13
Agostino Ardagna, Claudio, Asal, Rasool, Damiani, Ernesto, El Ioini, Nabil, Pahl, Claus.  2019.  Trustworthy IoT: An Evidence Collection Approach Based on Smart Contracts. 2019 IEEE International Conference on Services Computing (SCC). :46–50.
Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain.
2020-02-10
Sani, Abubakar Sadiq, Yuan, Dong, Bao, Wei, Yeoh, Phee Lep, Dong, Zhao Yang, Vucetic, Branka, Bertino, Elisa.  2019.  Xyreum: A High-Performance and Scalable Blockchain for IIoT Security and Privacy. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1920–1930.
As cyber attacks to Industrial Internet of Things (IIoT) remain a major challenge, blockchain has emerged as a promising technology for IIoT security due to its decentralization and immutability characteristics. Existing blockchain designs, however, introduce high computational complexity and latency challenges which are unsuitable for IIoT. This paper proposes Xyreum, a new high-performance and scalable blockchain for enhanced IIoT security and privacy. Xyreum uses a Time-based Zero-Knowledge Proof of Knowledge (T-ZKPK) with authenticated encryption to perform Mutual Multi-Factor Authentication (MMFA). T-ZKPK properties are also used to support Key Establishment (KE) for securing transactions. Our approach for reaching consensus, which is a blockchain group decision-making process, is based on lightweight cryptographic algorithms. We evaluate our scheme with respect to security, privacy, and performance, and the results show that, compared with existing relevant blockchain solutions, our scheme is secure, privacy-preserving, and achieves a significant decrease in computation complexity and latency performance with high scalability. Furthermore, we explain how to use our scheme to strengthen the security of the REMME protocol, a blockchain-based security protocol deployed in several application domains.
2020-12-11
Abusnaina, A., Khormali, A., Alasmary, H., Park, J., Anwar, A., Mohaisen, A..  2019.  Adversarial Learning Attacks on Graph-based IoT Malware Detection Systems. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1296—1305.

IoT malware detection using control flow graph (CFG)-based features and deep learning networks are widely explored. The main goal of this study is to investigate the robustness of such models against adversarial learning. We designed two approaches to craft adversarial IoT software: off-the-shelf methods and Graph Embedding and Augmentation (GEA) method. In the off-the-shelf adversarial learning attack methods, we examine eight different adversarial learning methods to force the model to misclassification. The GEA approach aims to preserve the functionality and practicality of the generated adversarial sample through a careful embedding of a benign sample to a malicious one. Intensive experiments are conducted to evaluate the performance of the proposed method, showing that off-the-shelf adversarial attack methods are able to achieve a misclassification rate of 100%. In addition, we observed that the GEA approach is able to misclassify all IoT malware samples as benign. The findings of this work highlight the essential need for more robust detection tools against adversarial learning, including features that are not easy to manipulate, unlike CFG-based features. The implications of the study are quite broad, since the approach challenged in this work is widely used for other applications using graphs.

2020-07-10
Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.

2020-10-06
Payne, Josh, Budhraja, Karan, Kundu, Ashish.  2019.  How Secure Is Your IoT Network? 2019 IEEE International Congress on Internet of Things (ICIOT). :181—188.

The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is wide-spread and continuing to increase in a superlinear manner. The question is: how can one assess the security of an IoT network in a holistic manner? In this paper, we have explored two dimensions of security assessment- using vulnerability information and attack vectors of IoT devices and their underlying components (compositional security scores) and using SIEM logs captured from the communications and operations of such devices in a network (dynamic activity metrics). These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of the network. We decided to approach threat modeling using attack graphs. To that end, we propose the notion of attack circuits, which are generated from input/output pairs constructed from CVEs using NLP, and an attack graph composed of these circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.

2020-12-01
Nikander, P., Autiosalo, J., Paavolainen, S..  2019.  Interledger for the Industrial Internet of Things. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:908—915.

The upsurge of Industrial Internet of Things is forcing industrial information systems to enable less hierarchical information flow. The connections between humans, devices, and their digital twins are growing in numbers, creating a need for new kind of security and trust solutions. To address these needs, industries are applying distributed ledger technologies, aka blockchains. A significant number of use cases have been studied in the sectors of logistics, energy markets, smart grid security, and food safety, with frequently reported benefits in transparency, reduced costs, and disintermediation. However, distributed ledger technologies have challenges with transaction throughput, latency, and resource requirements, which render the technology unusable in many cases, particularly with constrained Internet of Things devices.To overcome these challenges within the Industrial Internet of Things, we suggest a set of interledger approaches that enable trusted information exchange across different ledgers and constrained devices. With these approaches, the technically most suitable ledger technology can be selected for each use case while simultaneously enjoying the benefits of the most widespread ledger implementations. We present state of the art for distributed ledger technologies to support the use of interledger approaches in industrial settings.

2020-07-03
Fitwi, Alem, Chen, Yu, Zhu, Sencun.  2019.  A Lightweight Blockchain-Based Privacy Protection for Smart Surveillance at the Edge. 2019 IEEE International Conference on Blockchain (Blockchain). :552—555.

Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacy-preserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.

2020-12-02
Abeysekara, P., Dong, H., Qin, A. K..  2019.  Machine Learning-Driven Trust Prediction for MEC-Based IoT Services. 2019 IEEE International Conference on Web Services (ICWS). :188—192.

We propose a distributed machine-learning architecture to predict trustworthiness of sensor services in Mobile Edge Computing (MEC) based Internet of Things (IoT) services, which aligns well with the goals of MEC and requirements of modern IoT systems. The proposed machine-learning architecture models training a distributed trust prediction model over a topology of MEC-environments as a Network Lasso problem, which allows simultaneous clustering and optimization on large-scale networked-graphs. We then attempt to solve it using Alternate Direction Method of Multipliers (ADMM) in a way that makes it suitable for MEC-based IoT systems. We present analytical and simulation results to show the validity and efficiency of the proposed solution.

2020-01-28
Kurniawan, Agus, Kyas, Marcel.  2019.  Securing Machine Learning Engines in IoT Applications with Attribute-Based Encryption. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :30–34.

Machine learning has been adopted widely to perform prediction and classification. Implementing machine learning increases security risks when computation process involves sensitive data on training and testing computations. We present a proposed system to protect machine learning engines in IoT environment without modifying internal machine learning architecture. Our proposed system is designed for passwordless and eliminated the third-party in executing machine learning transactions. To evaluate our a proposed system, we conduct experimental with machine learning transactions on IoT board and measure computation time each transaction. The experimental results show that our proposed system can address security issues on machine learning computation with low time consumption.

2020-04-10
Mucchi, Lorenzo, Nizzi, Francesca, Pecorella, Tommaso, Fantacci, Romano, Esposito, Flavio.  2019.  Benefits of Physical Layer Security to Cryptography: Tradeoff and Applications. 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :1—3.
Physical-layer security (PLS) has raised the attention of the research community in recent years, particularly for Internet of things (IoT) applications. Despite the use of classical cryptography, PLS provides security at physical layer, regardless of the computational power owned by the attacker. The investigations on PLS are numerous in the literature, but one main issue seems to be kept apart: how to measure the benefit that PLS can bring to cryptography? This paper tries to answer this question with an initial performance analysis of PLS in conjunction with typical cryptography of wireless communication protocols. Our results indicate that PLS can help cryptography to harden the attacker job in real operative scenario: PLS can increase the detection errors at the attacker's receiver, leading to inability to recover the cipher key, even if the plaintext is known.
2020-02-10
Sun, Shuang, Chen, Shudong, Du, Rong, Li, Weiwei, Qi, Donglin.  2019.  Blockchain Based Fine-Grained and Scalable Access Control for IoT Security and Privacy. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :598–603.
In this paper, we focuses on an access control issue in the Internet of Things (IoT). Generally, we firstly propose a decentralized IoT system based on blockchain. Then we establish a secure fine-grained access control strategies for users, devices, data, and implement the strategies with smart contract. To trigger the smart contract, we design different transactions. Finally, we use the multi-index table struct for the access right's establishment, and store the access right into Key-Value database to improve the scalability of the decentralized IoT system. In addition, to improve the security of the system we also store the access records on the blockchain and database.
2020-02-24
Brotsis, Sotirios, Kolokotronis, Nicholas, Limniotis, Konstantinos, Shiaeles, Stavros, Kavallieros, Dimitris, Bellini, Emanuele, Pavué, Clément.  2019.  Blockchain Solutions for Forensic Evidence Preservation in IoT Environments. 2019 IEEE Conference on Network Softwarization (NetSoft). :110–114.
The technological evolution brought by the Internet of things (IoT) comes with new forms of cyber-attacks exploiting the complexity and heterogeneity of IoT networks, as well as, the existence of many vulnerabilities in IoT devices. The detection of compromised devices, as well as the collection and preservation of evidence regarding alleged malicious behavior in IoT networks, emerge as areas of high priority. This paper presents a blockchain-based solution, which is designed for the smart home domain, dealing with the collection and preservation of digital forensic evidence. The system utilizes a private forensic evidence database, where the captured evidence is stored, along with a permissioned blockchain that allows providing security services like integrity, authentication, and non-repudiation, so that the evidence can be used in a court of law. The blockchain stores evidences' metadata, which are critical for providing the aforementioned services, and interacts via smart contracts with the different entities involved in an investigation process, including Internet service providers, law enforcement agencies and prosecutors. A high-level architecture of the blockchain-based solution is presented that allows tackling the unique challenges posed by the need for digitally handling forensic evidence collected from IoT networks.
2020-01-20
Faticanti, Francescomaria, De Pellegrini, Francesco, Siracusa, Domenico, Santoro, Daniele, Cretti, Silvio.  2019.  Cutting Throughput with the Edge: App-Aware Placement in Fog Computing. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :196–203.

Fog computing extends cloud computing technology to the edge of the infrastructure to support dynamic computation for IoT applications. Reduced latency and location awareness in objects' data access is attained by displacing workloads from the central cloud to edge devices. Doing so, it reduces raw data transfers from target objects to the central cloud, thus overcoming communication bottlenecks. This is a key step towards the pervasive uptake of next generation IoT-based services. In this work we study efficient orchestration of applications in fog computing, where a fog application is the cascade of a cloud module and a fog module. The problem results into a mixed integer non linear optimisation. It involves multiple constraints due to computation and communication demands of fog applications, available infrastructure resources and it accounts also the location of target IoT objects. We show that it is possible to reduce the complexity of the original problem with a related placement formulation, which is further solved using a greedy algorithm. This algorithm is the core placement logic of FogAtlas, a fog computing platform based on existing virtualization technologies. Extensive numerical results validate the model and the scalability of the proposed algorithm, showing performance close to the optimal solution with respect to the number of served applications.

Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.

Tedeschi, Pietro, Sciancalepore, Savio.  2019.  Edge and Fog Computing in Critical Infrastructures: Analysis, Security Threats, and Research Challenges. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :1–10.

The increasing integration of information and communication technologies has undoubtedly boosted the efficiency of Critical Infrastructures (CI). However, the first wave of IoT devices, together with the management of enormous amount of data generated by modern CIs, has created serious architectural issues. While the emerging Fog and Multi-Access Edge Computing (FMEC) paradigms can provide a viable solution, they also bring inherent security issues, that can cause dire consequences in the context of CIs. In this paper, we analyze the applications of FMEC solutions in the context of CIs, with a specific focus on related security issues and threats for the specific while broad scenarios: a smart airport, a smart port, and a smart offshore oil and gas extraction field. Leveraging these scenarios, a set of general security requirements for FMEC is derived, together with crucial research challenges whose further investigation is cornerstone for a successful adoption of FMEC in CIs.

2020-07-30
Su, Wei-Tsung, Chen, Wei-Cheng, Chen, Chao-Chun.  2019.  An Extensible and Transparent Thing-to-Thing Security Enhancement for MQTT Protocol in IoT Environment. 2019 Global IoT Summit (GIoTS). :1—4.

Message Queue Telemetry Transport (MQTT) is widely accepted as a data exchange protocol in Internet of Things (IoT) environment. For security, MQTT supports Transport Layer Security (MQTT-TLS). However, MQTT-TLS provides thing-to-broker channel encryption only because data can still be exposed after MQTT broker. In addition, ACL becomes impractical due to the increasing number of rules for authorizing massive IoT devices. For solving these problems, we propose MQTT Thing-to-Thing Security (MQTT-TTS) which provides thing-to-thing security which prevents data leak. MQTT-TTS also provides the extensibility to include demanded security mechanisms for various security requirements. Moreover, the transparency of MQTT-TTS lets IoT application developers implementing secure data exchange with less programming efforts. Our MQTT-TTS implementation is available on https://github.com/beebit-sec/beebit-mqttc-sdk for evaluation.

2020-08-17
La Manna, Michele, Perazzo, Pericle, Rasori, Marco, Dini, Gianluca.  2019.  fABElous: An Attribute-Based Scheme for Industrial Internet of Things. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :33–38.
The Internet of Things (IoT) is a technological vision in which constrained or embedded devices connect together through the Internet. This enables common objects to be empowered with communication and cooperation capabilities. Industry can take an enormous advantage of IoT, leading to the so-called Industrial IoT. In these systems, integrity, confidentiality, and access control over data are key requirements. An emerging approach to reach confidentiality and access control is Attribute-Based Encryption (ABE), which is a technique able to enforce cryptographically an access control over data. In this paper, we propose fABElous, an ABE scheme suitable for Industrial IoT applications which aims at minimizing the overhead of encryption on communication. fABElous ensures data integrity, confidentiality, and access control, while reducing the communication overhead of 35% with respect to using ABE techniques naively.
Girgenti, Benedetto, Perazzo, Pericle, Vallati, Carlo, Righetti, Francesca, Dini, Gianluca, Anastasi, Giuseppe.  2019.  On the Feasibility of Attribute-Based Encryption on Constrained IoT Devices for Smart Systems. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :225–232.
The Internet of Things (IoT) is enabling a new generation of innovative services based on the seamless integration of smart objects into information systems. Such IoT devices generate an uninterrupted flow of information that can be transmitted through an untrusted network and stored on an untrusted infrastructure. The latter raises new security and privacy challenges that require novel cryptographic methods. Attribute-Based Encryption (ABE) is a new type of public-key encryption that enforces a fine-grained access control on encrypted data based on flexible access policies. The feasibility of ABE adoption in fully-fledged computing systems, i.e. smartphones or embedded systems, has been demonstrated in recent works. In this paper we assess the feasibility of the adoption of ABE in typical IoT constrained devices, characterized by limited capabilities in terms of computing, storage and power. Specifically, an implementation of three ABE schemes for ESP32, a low-cost popular platform to deploy IoT devices, is developed and evaluated in terms of encryption/decryption time and energy consumption. The performance evaluation shows that the adoption of ABE on constrained devices is feasible, although it has a cost that increases with the number of attributes. The analysis in particular highlights how ABE has a significant impact in the lifetime of battery-powered devices, which is impaired significantly when a high number of attributes is adopted.
2020-02-17
MacDermott, Áine, Lea, Stephen, Iqbal, Farkhund, Idowu, Ibrahim, Shah, Babar.  2019.  Forensic Analysis of Wearable Devices: Fitbit, Garmin and HETP Watches. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–6.
Wearable technology has been on an exponential rise and shows no signs of slowing down. One category of wearable technology is Fitness bands, which have the potential to show a user's activity levels and location data. Such information stored in fitness bands is just the beginning of a long trail of evidence fitness bands can store, which represents a huge opportunity to digital forensic practitioners. On the surface of recent work and research in this area, there does not appear to be any similar work that has already taken place on fitness bands and particularly, the devices in this study, a Garmin Forerunner 110, a Fitbit Charge HR and a Generic low-cost HETP fitness tracker. In this paper, we present our analysis of these devices for any possible digital evidence in a forensically sound manner, identifying files of interest and location data on the device. Data accuracy and validity of the evidence is shown, as a test run scenario wearing all of the devices allowed for data comparison analysis.
2020-03-12
Vieira, Leandro, Santos, Leonel, Gon\c calves, Ramiro, Rabadão, Carlos.  2019.  Identifying Attack Signatures for the Internet of Things: An IP Flow Based Approach. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.

At the time of more and more devices being connected to the internet, personal and sensitive information is going around the network more than ever. Thus, security and privacy regarding IoT communications, devices, and data are a concern due to the diversity of the devices and protocols used. Since traditional security mechanisms cannot always be adequate due to the heterogeneity and resource limitations of IoT devices, we conclude that there are still several improvements to be made to the 2nd line of defense mechanisms like Intrusion Detection Systems. Using a collection of IP flows, we can monitor the network and identify properties of the data that goes in and out. Since network flows collection have a smaller footprint than packet capturing, it makes it a better choice towards the Internet of Things networks. This paper aims to study IP flow properties of certain network attacks, with the goal of identifying an attack signature only by observing those properties.

2020-09-28
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.
2020-01-20
Laaboudi, Younes, Olivereau, Alexis, Oualha, Nouha.  2019.  An Intrusion Detection and Response Scheme for CP-ABE-Encrypted IoT Networks. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

This paper introduces a new method of applying both an Intrusion Detection System (IDS) and an Intrusion Response System (IRS) to communications protected using Ciphertext-Policy Attribute-based Encryption (CP-ABE) in the context of the Internet of Things. This method leverages features specific to CP-ABE in order to improve the detection capabilities of the IDS and the response ability of the network. It also enables improved privacy towards the users through group encryption rather than one-to-one shared key encryption as the policies used in the CP-ABE can easily include the IDS as an authorized reader. More importantly, it enables different levels of detection and response to intrusions, which can be crucial when using anomaly-based detection engines.

2019-12-18
Kolisnyk, Maryna, Kharchenko, Vyacheslav, Iryna, Piskachova.  2019.  IoT Server Availability Considering DDoS-Attacks: Analysis of Prevention Methods and Markov Model. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :51-56.

The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.