Biblio

Found 485 results

Filters: Keyword is IoT  [Clear All Filters]
2020-07-20
Lekidis, Alexios, Barosan, Ion.  2019.  Model-based simulation and threat analysis of in-vehicle networks. 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). :1–8.
Automotive systems are currently undergoing a rapid evolution through the integration of the Internet of Things (IoT) and Software Defined Networking (SDN) technologies. The main focus of this evolution is to improve the driving experience, including automated controls, intelligent navigation and safety systems. Moreover, the extremely rapid pace that such technologies are brought into the vehicles, necessitates the presence of adequate testing of new features to avoid operational errors. Apart from testing though, IoT and SDN technologies also widen the threat landscape of cyber-security risks due to the amount of connectivity interfaces that are nowadays exposed in vehicles. In this paper we present a new method, based on OMNET++, for testing new in-vehicle features and assessing security risks through network simulation. The method is demonstrated through a case-study on a Toyota Prius, whose network data are analyzed for the detection of anomalies caused from security threats or operational errors.
2020-01-13
Potrino, Giuseppe, de Rango, Floriano, Santamaria, Amilcare Francesco.  2019.  Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
2020-08-17
Huang, Kaiqing.  2019.  Multi-Authority Attribute-Based Encryption for Resource-Constrained Users in Edge Computing. 2019 International Conference on Information Technology and Computer Application (ITCA). :323–326.
Multi-authority attribute-based encryption (MA-ABE) is a promising technique to protect data privacy and achieve fine-grained access control in edge computing for Internet of Things (IoT). However, most of the existing MA-ABE schemes suffer from expensive computational cost in the encryption and decryption phases, which are not practical for resource constrained users in IoT. We propose a large-universe MA-CP-ABE scheme with online/offline encryption and outsourced decryption. In our scheme, most expensive encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, massive decryption operation are outsourced to the near edge server for reducing the computation overhead of decryption. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource-constrained users in edge computing for IoT.
2020-08-24
Sarma, Subramonian Krishna.  2019.  Optimized Activation Function on Deep Belief Network for Attack Detection in IoT. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :702–708.
This paper mainly focuses on presenting a novel attack detection system to thread out the risk issues in IoT. The presented attack detection system links the interconnection of DevOps as it creates the correlation between development and IT operations. Further, the presented attack detection model ensures the operational security of different applications. In view of this, the implemented system incorporates two main stages named Proposed Feature Extraction process and Classification. The data from every application is processed with the initial stage of feature extraction, which concatenates the statistical and higher-order statistical features. After that, these extracted features are supplied to classification process, where determines the presence of attacks. For this classification purpose, this paper aims to deploy the optimized Deep Belief Network (DBN), where the activation function is tuned optimally. Furthermore, the optimal tuning is done by a renowned meta-heuristic algorithm called Lion Algorithm (LA). Finally, the performance of proposed work is compared and proved over other conventional methods.
2020-02-17
Pandelea, Alexandru-Ionut, Chiroiu, Mihai-Daniel.  2019.  Password Guessing Using Machine Learning on Wearables. 2019 22nd International Conference on Control Systems and Computer Science (CSCS). :304–311.
Wearables are now ubiquitous items equipped with a multitude of sensors such as GPS, accelerometer, or Bluetooth. The raw data from this sensors are typically used in a health context. However, we can also use it for security purposes. In this paper, we present a solution that aims at using data from the sensors of a wearable device to identify the password a user is typing on a keyboard by using machine learning algorithms. Hence, the purpose is to determine whether a malicious third party application could extract sensitive data through the raw data that it has access to.
2020-08-24
Yuan, Xu, Zhang, Jianing, Chen, Zhikui, Gao, Jing, Li, Peng.  2019.  Privacy-Preserving Deep Learning Models for Law Big Data Feature Learning. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :128–134.
Nowadays, a massive number of data, referred as big data, are being collected from social networks and Internet of Things (IoT), which are of tremendous value. Many deep learning-based methods made great progress in the extraction of knowledge of those data. However, the knowledge extraction of the law data poses vast challenges on the deep learning, since the law data usually contain the privacy information. In addition, the amount of law data of an institution is not large enough to well train a deep model. To solve these challenges, some privacy-preserving deep learning are proposed to capture knowledge of privacy data. In this paper, we review the emerging topics of deep learning for the feature learning of the privacy data. Then, we discuss the problems and the future trend in deep learning for privacy-preserving feature learning on law data.
2020-03-23
Korenda, Ashwija Reddy, Afghah, Fatemeh, Cambou, Bertrand, Philabaum, Christopher.  2019.  A Proof of Concept SRAM-based Physically Unclonable Function (PUF) Key Generation Mechanism for IoT Devices. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–8.
This paper provides a proof of concept for using SRAM based Physically Unclonable Functions (PUFs) to generate private keys for IoT devices. PUFs are utilized, as there is inadequate protection for secret keys stored in the memory of the IoT devices. We utilize a custom-made Arduino mega shield to extract the fingerprint from SRAM chip on demand. We utilize the concepts of ternary states to exclude the cells which are easily prone to flip, allowing us to extract stable bits from the fingerprint of the SRAM. Using the custom-made software for our SRAM device, we can control the error rate of the PUF to achieve an adjustable memory-based PUF for key generation. We utilize several fuzzy extractor techniques based on using different error correction coding methods to generate secret keys from the SRAM PUF, and study the trade-off between the false authentication rate and false rejection rate of the PUF.
2020-03-16
Rosa, Taras, Kaidan, Mykola, Gazda, Juraj, Bykovyy, Pavlo, Sapozhnyk, Grygoriy, Maksymyuk, Taras.  2019.  Scalable QAM Modulation for Physical Layer Security of Wireless Networks. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:1095–1098.
The rapid growth of the connected devices driven by Internet of Things (IoT) concept requires a complete rethinking of the conventional approaches for the network design. One of the key constraints of the IoT devices are their low capabilities in order to optimize energy consumption. On the other hand, many IoT applications require high level of data protection and privacy, which can be provided only by advanced cryptographic algorithms, which are not feasible for IoT devices. In this paper, we propose a scalable quadrature modulation aiming to solve the problem of secure communications at the physical layer. The key idea of the proposed approach is to transmit only part of information in way that allows target receiver to retrieve the complete information. Such approach allows to ensure the security of wireless channel, while reducing the overhead of advanced cryptographic algorithms.
2022-06-06
Elmalaki, Salma, Ho, Bo-Jhang, Alzantot, Moustafa, Shoukry, Yasser, Srivastava, Mani.  2019.  SpyCon: Adaptation Based Spyware in Human-in-the-Loop IoT. 2019 IEEE Security and Privacy Workshops (SPW). :163–168.
Personalized IoT adapt their behavior based on contextual information, such as user behavior and location. Unfortunately, the fact that personalized IoT adapt to user context opens a side-channel that leaks private information about the user. To that end, we start by studying the extent to which a malicious eavesdropper can monitor the actions taken by an IoT system and extract user's private information. In particular, we show two concrete instantiations (in the context of mobile phones and smart homes) of a new category of spyware which we refer to as Context-Aware Adaptation Based Spyware (SpyCon). Experimental evaluations show that the developed SpyCon can predict users' daily behavior with an accuracy of 90.3%. Being a new spyware with no known prior signature or behavior, traditional spyware detection that is based on code signature or system behavior are not adequate to detect SpyCon. We discuss possible detection and mitigation mechanisms that can hinder the effect of SpyCon.
2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
2020-05-15
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.  2019.  Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
2020-01-27
Hibti, Meryem, Baïna, Karim, Benatallah, Boualem.  2019.  Towards Swarm Intelligence Architectural Patterns: an IoT-Big Data-AI-Blockchain convergence perspective. Proceedings of the 4th International Conference on Big Data and Internet of Things. :1–8.
The Internet of Things (IoT) is exploding. It is made up of billions of smart devices -from minuscule chips to mammoth machines - that use wireless technology to talk to each other (and to us). IoT infrastructures can vary from instrumented connected devices providing data externally to smart, and autonomous systems. To accompany data explosion resulting, among others, from IoT, Big data analytics processes examine large data sets to uncover hidden patterns, unknown correlations between collected events, either at a very technical level (incident/anomaly detection, predictive maintenance) or at business level (customer preferences, market trends, revenue opportunities) to provide improved operational efficiency, better customer service, competitive advantages over rival organizations, etc. In order to capitalize business value of the data generated by IoT sensors, IoT, Big Data Analytics/IA need to meet in the middle. One critical use case for IoT is to warn organizations when a product or service is at risk. The aim of this paper is to present a first proposal of IoT-Big Data-IA architectural patterns catalogues with a Blockchain implementation perspective in seek of design methodologies artifacts.
2020-08-13
Zhou, Kexin, Wang, Jian.  2019.  Trajectory Protection Scheme Based on Fog Computing and K-anonymity in IoT. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
With the development of cloud computing technology in the Internet of Things (IoT), the trajectory privacy in location-based services (LBSs) has attracted much attention. Most of the existing work adopts point-to-point and centralized models, which will bring a heavy burden to the user and cause performance bottlenecks. Moreover, previous schemes did not consider both online and offline trajectory protection and ignored some hidden background information. Therefore, in this paper, we design a trajectory protection scheme based on fog computing and k-anonymity for real-time trajectory privacy protection in continuous queries and offline trajectory data protection in trajectory publication. Fog computing provides the user with local storage and mobility to ensure physical control, and k-anonymity constructs the cloaking region for each snapshot in terms of time-dependent query probability and transition probability. In this way, two k-anonymity-based dummy generation algorithms are proposed, which achieve the maximum entropy of online and offline trajectory protection. Security analysis and simulation results indicate that our scheme can realize trajectory protection effectively and efficiently.
2020-04-13
Mohanta, Bhabendu K., Panda, Soumyashree S., Satapathy, Utkalika, Jena, Debasish, Gountia, Debasis.  2019.  Trustworthy Management in Decentralized IoT Application using Blockchain. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Internet of Things (IoT) as per estimated will connect 50 billion devices by 2020. Since its evolution, IoT technology provides lots of flexibility to develop and implement any application. Most of the application improves the human living standard and also makes life easy to access and monitoring the things in real time. Though there exist some security and privacy issues in IoT system like authentication, computation, data modification, trust among users. In this paper, we have identified the IoT application like insurance, supply chain system, smart city and smart car where trust among associated users is an major issue. The current centralized system does not provide enough trust between users. Using Blockchain technology we have shown that trust issue among users can be managed in a decentralized way so that information can be traceable and identify/verify any time. Blockchain has properties like distributed, digitally share and immutable which enhance security. For Blockchain implementation, Ethereum platform is used.
2020-02-17
Alfaleh, Faleh, Alfehaid, Haitham, Alanzy, Mohammed, Elkhediri, Salim.  2019.  Wireless Sensor Networks Security: Case study. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Wireless Sensor Networks (WSNs) are important and becoming more important as we integrate wireless sensor networks and the internet with different things, which has changed our life, and it is affected everywhere in our life like shopping, storage, live monitoring, smart home etc., called Internet of Things (IoT), as any use of the network physical devices that included in electronics, software, sensors, actuators, and connectivity which makes available these things to connect, collect and exchange data, and the most importantly thing is the accuracy of the data that has been collected in the Internet of Things, detecting sensor data with faulty readings is an important issue of secure communication and power consumption. So, requirement of energy-efficiency and integrity of information is mandatory.
2020-09-21
Wang, An, Mohaisen, Aziz, Chen, Songqing.  2019.  XLF: A Cross-layer Framework to Secure the Internet of Things (IoT). 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1830–1839.
The burgeoning Internet of Things (IoT) has offered unprecedented opportunities for innovations and applications that are continuously changing our life. At the same time, the large amount of pervasive IoT applications have posed paramount threats to the user's security and privacy. While a lot of efforts have been dedicated to deal with such threats from the hardware, the software, and the applications, in this paper, we argue and envision that more effective and comprehensive protection for IoT systems can only be achieved via a cross-layer approach. As such, we present our initial design of XLF, a cross-layer framework towards this goal. XLF can secure the IoT systems not only from each individual layer of device, network, and service, but also through the information aggregation and correlation of different layers.
2020-02-17
Rizk, Dominick, Rizk, Rodrigue, Hsu, Sonya.  2019.  Applied Layered-Security Model to IoMT. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :227–227.

Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.

2019-12-18
Guleria, Akshit, Kalra, Evneet, Gupta, Kunal.  2019.  Detection and Prevention of DoS Attacks on Network Systems. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :544-548.

Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.

2020-06-19
Novak, Marek, Skryja, Petr.  2019.  Efficient Partial Firmware Update for IoT Devices with Lua Scripting Interface. 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA). :1—4.

The paper introduces a method of efficient partial firmware update with several advantages compared to common methods. The amount of data to transfer for an update is reduced, the energetic efficiency is increased and as the method is designed for over the air update, the radio spectrum occupancy is decreased. Herein described approach uses Lua scripting interface to introduce updatable fragments of invokable native code. This requires a dedicated memory layout, which is herein introduced. This method allows not only to distribute patches for deployed systems, but also on demand add-ons. At the end, the security aspects of proposed firmware update system is discussed and its limitations are presented.

2020-01-20
Bardoutsos, Andreas, Filios, Gabriel, Katsidimas, Ioannis, Nikoletseas, Sotiris.  2019.  Energy Efficient Algorithm for Multihop BLE Networks on Resource-Constrained Devices. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :400–407.

Bluetooth Low Energy is a fast growing protocol which has gained wide acceptance during last years. Key features for this growth are its high data rate and its ultra low energy consumption, making it the perfect candidate for piconets. However, the lack of expandability without serious impact on its energy consumption profile, prevents its adoption on more complex systems which depend on long network lifetime. Thus, a lot of academic research has been focused on the solution of BLE expandability problem and BLE mesh has been introduced on the latest Bluetooth version. In our point of view, most of the related work cannot be efficiently implemented in networks which are mostly comprised of constrained-resource nodes. Thus, we propose a new energy efficient tree algorithm for BLE static constrained-resources networks, which achieves a longer network lifetime by both reducing as much as possible the number of needed connection events and balancing the energy dissipation in the network.

2020-05-08
Kearney, Paul, Asal, Rasool.  2019.  ERAMIS: A Reference Architecture-Based Methodology for IoT Systems. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:366—367.

Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.

2020-01-20
Alhazmi, Omar H., Aloufi, Khalid S..  2019.  Fog-Based Internet of Things: A Security Scheme. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Internet of Things (IoT) stack models differ in their architecture, applications and needs. Hence, there are different approaches to apply IoT; for instance, it can be based on traditional data center or based on cloud computing. In fact, Cloud-based IoT is gaining more popularity due to its high scalability and cost effectiveness; hence, it is becoming the norm. However, Cloud is usually located far from the IoT devices and some recent research suggests using Fog-Based IoT by using a nearby light-weight middleware to bridge the gap and to provide the essential support and communication between devices, sensors, receptors and the servers. Therefore, Fog reduces centrality and provides local processing for faster analysis, especially for the time-sensitive applications. Thus, processing is done faster, giving the system flexibility for faster response time. Fog-Based Internet of Things security architecture should be suitable to the environment and provide the necessary measures to improve all security aspects with respect to the available resources and within performance constraints. In this work, we discuss some of these challenges, analyze performance of Fog based IoT and propose a security scheme based on MQTT protocol. Moreover, we present a discussion on security-performance tradeoffs.

2021-10-26
Mario Ayala, Rob Cantu, Richard Holder, Jeff Huegel, Niten Malik, Michalina M., Adrienne Raglin, Ashley Reichert, Ash Richter, Kimberley Sanders.  2019.  Industrial Internet of Things (IIoT) Interconnections.

IIoT devices are sourced in many different countries and contain many components including hardware, software, and firmware. Each of these devices and components have a supply chain that can be compromised at many points including by the manufacturer, the software libraries, the shippers, the distributors and more.

2020-01-20
Noura, Hassan, Couturier, Raphael, Pham, Congduc, Chehab, Ali.  2019.  Lightweight Stream Cipher Scheme for Resource-Constrained IoT Devices. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The Internet of Things (IoT) systems are vulnerable to many security threats that may have drastic impacts. Existing cryptographic solutions do not cater for the limitations of resource-constrained IoT devices, nor for real-time requirements of some IoT applications. Therefore, it is essential to design new efficient cipher schemes with low overhead in terms of delay and resource requirements. In this paper, we propose a lightweight stream cipher scheme, which is based, on one hand, on the dynamic key-dependent approach to achieve a high security level, and on the other hand, the scheme involves few simple operations to minimize the overhead. In our approach, cryptographic primitives change in a dynamic lightweight manner for each input block. Security and performance study as well as experimentation are performed to validate that the proposed cipher achieves a high level of efficiency and robustness, making it suitable for resource-constrained IoT devices.

2020-09-28
Butun, Ismail, Österberg, Patrik, Gidlund, Mikael.  2019.  Preserving Location Privacy in Cyber-Physical Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–6.
The trending technological research platform is Internet of Things (IoT)and most probably it will stay that way for a while. One of the main application areas of IoT is Cyber-Physical Systems (CPSs), in which IoT devices can be leveraged as actuators and sensors in accordance with the system needs. The public acceptance and adoption of CPS services and applications will create a huge amount of privacy issues related to the processing, storage and disclosure of the user location information. As a remedy, our paper proposes a methodology to provide location privacy for the users of CPSs. Our proposal takes advantage of concepts such as mix-zone, context-awareness, and location-obfuscation. According to our best knowledge, the proposed methodology is the first privacy-preserving location service for CPSs that offers adaptable privacy levels related to the current context of the user.