Biblio
Nowadays, IoT has crossed all borders and become ubiquitous in everyday life. This emerging technology has a huge success in closing the gap between the digital and the real world. However, security and privacy become huge concerns especially in the medical field which prevent the healthcare industry from adopting it despite its benefits and potentials. This paper focuses on identifying potential security threats to the IoMT and presents the security mechanisms to remove any possible impediment from immune information security of IoMT. A summarized framework of the layered-security model is proposed followed by a specific assessment review of each layer.
Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.
The paper introduces a method of efficient partial firmware update with several advantages compared to common methods. The amount of data to transfer for an update is reduced, the energetic efficiency is increased and as the method is designed for over the air update, the radio spectrum occupancy is decreased. Herein described approach uses Lua scripting interface to introduce updatable fragments of invokable native code. This requires a dedicated memory layout, which is herein introduced. This method allows not only to distribute patches for deployed systems, but also on demand add-ons. At the end, the security aspects of proposed firmware update system is discussed and its limitations are presented.
Bluetooth Low Energy is a fast growing protocol which has gained wide acceptance during last years. Key features for this growth are its high data rate and its ultra low energy consumption, making it the perfect candidate for piconets. However, the lack of expandability without serious impact on its energy consumption profile, prevents its adoption on more complex systems which depend on long network lifetime. Thus, a lot of academic research has been focused on the solution of BLE expandability problem and BLE mesh has been introduced on the latest Bluetooth version. In our point of view, most of the related work cannot be efficiently implemented in networks which are mostly comprised of constrained-resource nodes. Thus, we propose a new energy efficient tree algorithm for BLE static constrained-resources networks, which achieves a longer network lifetime by both reducing as much as possible the number of needed connection events and balancing the energy dissipation in the network.
Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.
Internet of Things (IoT) stack models differ in their architecture, applications and needs. Hence, there are different approaches to apply IoT; for instance, it can be based on traditional data center or based on cloud computing. In fact, Cloud-based IoT is gaining more popularity due to its high scalability and cost effectiveness; hence, it is becoming the norm. However, Cloud is usually located far from the IoT devices and some recent research suggests using Fog-Based IoT by using a nearby light-weight middleware to bridge the gap and to provide the essential support and communication between devices, sensors, receptors and the servers. Therefore, Fog reduces centrality and provides local processing for faster analysis, especially for the time-sensitive applications. Thus, processing is done faster, giving the system flexibility for faster response time. Fog-Based Internet of Things security architecture should be suitable to the environment and provide the necessary measures to improve all security aspects with respect to the available resources and within performance constraints. In this work, we discuss some of these challenges, analyze performance of Fog based IoT and propose a security scheme based on MQTT protocol. Moreover, we present a discussion on security-performance tradeoffs.
IIoT devices are sourced in many different countries and contain many components including hardware, software, and firmware. Each of these devices and components have a supply chain that can be compromised at many points including by the manufacturer, the software libraries, the shippers, the distributors and more.
The Internet of Things (IoT) systems are vulnerable to many security threats that may have drastic impacts. Existing cryptographic solutions do not cater for the limitations of resource-constrained IoT devices, nor for real-time requirements of some IoT applications. Therefore, it is essential to design new efficient cipher schemes with low overhead in terms of delay and resource requirements. In this paper, we propose a lightweight stream cipher scheme, which is based, on one hand, on the dynamic key-dependent approach to achieve a high security level, and on the other hand, the scheme involves few simple operations to minimize the overhead. In our approach, cryptographic primitives change in a dynamic lightweight manner for each input block. Security and performance study as well as experimentation are performed to validate that the proposed cipher achieves a high level of efficiency and robustness, making it suitable for resource-constrained IoT devices.