Biblio

Found 1049 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2021-12-21
Xiaojian, Zhang, Liandong, Chen, Jie, Fan, Xiangqun, Wang, Qi, Wang.  2021.  Power IoT Security Protection Architecture Based on Zero Trust Framework. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :166–170.
The construction of the power Internet of Things has led various terminals to access the corporate network on a large scale. The internal and external business interaction and data exchange are more extensive. The current security protection system is based on border isolation protection. This is difficult to meet the needs of the power Internet of Things connection and open shared services. This paper studies the application scheme of the ``zero trust'' typical business scenario of the power Internet of Things with ``Continuous Identity Authentication and Dynamic Access Control'' as the core, and designs the power internet security protection architecture based on zero trust.
2022-01-10
Paul, Avishek, Islam, Md Rabiul.  2021.  An Artificial Neural Network Based Anomaly Detection Method in CAN Bus Messages in Vehicles. 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). :1–5.

Controller Area Network is the bus standard that works as a central system inside the vehicles for communicating in-vehicle messages. Despite having many advantages, attackers may hack into a car system through CAN bus, take control of it and cause serious damage. For, CAN bus lacks security services like authentication, encryption etc. Therefore, an anomaly detection system must be integrated with CAN bus in vehicles. In this paper, we proposed an Artificial Neural Network based anomaly detection method to identify illicit messages in CAN bus. We trained our model with two types of attacks so that it can efficiently identify the attacks. When tested, the proposed algorithm showed high performance in detecting Denial of Service attacks (with accuracy 100%) and Fuzzy attacks (with accuracy 99.98%).

2022-04-18
Shi, Pinyi, Song, Yongwook, Fei, Zongming, Griffioen, James.  2021.  Checking Network Security Policy Violations via Natural Language Questions. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network security policies provide high-level directives regarding acceptable and unacceptable use of the network. Organizations specify these high-level directives in policy documents written using human-readable natural language. The challenge is to convert these natural language policies to the network configurations/specifications needed to enforce the policy. Network administrators, who are responsible for enforcing the policies, typically translate the policies manually, which is a challenging and error-prone process. As a result, network operators (as well as the policy authors) often want to verify that network policies are being correctly enforced. In this paper, we propose Network Policy Conversation Engine (NPCE), a system designed to help network operators (or policy writers) interact with the network using natural language (similar to the language used in the network policy statements themselves) to understand whether policies are being correctly enforced. The system leverages emerging big data collection and analysis techniques to record flow and packet level activity throughout the network that can be used to answer users policy questions. The system also takes advantage of recent advances in Natural Language Processing (NLP) to translate natural language policy questions into the corresponding network queries. To evaluate our system, we demonstrate a wide range of policy questions – inspired by actual networks policies posted on university websites – that can be asked of the system to determine if a policy violation has occurred.
2022-06-07
Varsha Suresh, P., Lalitha Madhavu, Minu.  2021.  Insider Attack: Internal Cyber Attack Detection Using Machine Learning. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1–7.
A Cyber Attack is a sudden attempt launched by cybercriminals against multiple computers or networks. According to evolution of cyber space, insider attack is the most serious attack faced by end users, all over the world. Cyber Security reports shows that both US federal Agency as well as different organizations faces insider threat. Machine learning (ML) provide an important technology to secure data from insider threats. Random Forest is the best algorithm that focus on user's action, services and ability for insider attack detection based on data granularity. Substantial raise in the count of decision tree, increases the time consumption and complexity of Random Forest. A novel algorithm Known as Random Forest With Randomized Weighted Fuzzy Feature Set (RF-RWFF) is developed. Fuzzy Membership Function is used for feature aggregation and Randomized Weighted Majority Algorithm (RWMA) is used in the prediction part of Random Forest (RF) algorithm to perform voting. RWMA transform conventional Random Forest, to a perceptron like algorithm and increases the miliage. The experimental results obtained illustrate that the proposed model exhibits an overall improvement in accuracy and recall rate with very much decrease in time complexity compared to conventional Random Forest algorithm. This algorithm can be used in organization and government sector to detect insider fastly and accurately.
2022-01-10
Viktoriia, Hrechko, Hnatienko, Hrygorii, Babenko, Tetiana.  2021.  An Intelligent Model to Assess Information Systems Security Level. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :128–133.

This research presents a model for assessing information systems cybersecurity maturity level. The main purpose of the model is to provide comprehensive support for information security specialists and auditors in checking information systems security level, checking security policy implementation, and compliance with security standards. The model synthesized based on controls and practices present in ISO 27001 and ISO 27002 and the neural network of direct signal propagation. The methodology described in this paper can also be extended to synthesis a model for different security control sets and, consequently, to verify compliance with another security standard or policy. The resulting model describes a real non-automated process of assessing the maturity of an IS at an acceptable level and it can be recommended to be used in the process of real audit of Information Security Management Systems.

2022-04-18
Yuan, Liu, Bai, Yude, Xing, Zhenchang, Chen, Sen, Li, Xiaohong, Deng, Zhidong.  2021.  Predicting Entity Relations across Different Security Databases by Using Graph Attention Network. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :834–843.
Security databases such as Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), and Common Attack Pattern Enumeration and Classification (CAPEC) maintain diverse high-quality security concepts, which are treated as security entities. Meanwhile, security entities are documented with many potential relation types that profit for security analysis and comprehension across these three popular databases. To support reasoning security entity relationships, translation-based knowledge graph representation learning treats each triple independently for the entity prediction. However, it neglects the important semantic information about the neighbor entities around the triples. To address it, we propose a text-enhanced graph attention network model (text-enhanced GAT). This model highlights the importance of the knowledge in the 2-hop neighbors surrounding a triple, under the observation of the diversity of each entity. Thus, we can capture more structural and textual information from the knowledge graph about the security databases. Extensive experiments are designed to evaluate the effectiveness of our proposed model on the prediction of security entity relationships. Moreover, the experimental results outperform the state-of-the-art by Mean Reciprocal Rank (MRR) 0.132 for detecting the missing relationships.
2022-03-08
Li, Yangyang, Ji, Yipeng, Li, Shaoning, He, Shulong, Cao, Yinhao, Liu, Yifeng, Liu, Hong, Li, Xiong, Shi, Jun, Yang, Yangchao.  2021.  Relevance-Aware Anomalous Users Detection in Social Network via Graph Neural Network. 2021 International Joint Conference on Neural Networks (IJCNN). :1—8.
Anomalous users detection in social network is an imperative task for security problems. Motivated by the great power of Graph Neural Networks(GNNs), many current researches adopt GNN-based detectors to reveal the anomalous users. However, the increasing scale of social activities, explosive growth of users and manifold technical disguise render the user detection a difficult task. In this paper, we propose an innovate Relevance-aware Anomalous Users Detection model (RAU-GNN) to obtain a fine-grained detection result. RAU-GNN first extracts multiple relations of all types of users in social network, including both benign and anomalous users, and accordingly constructs the multiple user relation graph. Secondly, we employ relevance-aware GNN framework to learn the hidden features of users, and discriminate the anomalous users after discriminating. Concretely, by integrating Graph Convolution Network(GCN) and Graph Attention Network(GAT), we design a GCN-based relation fusion layer to aggregate initial information from different relations, and a GAT-based embedding layer to obtain the high-level embeddings. Lastly, we feed the learned representations to the following GNN layer in order to consolidate the node embedding by aggregating the final users' embeddings. We conduct extensive experiment on real-world datasets. The experimental results show that our approach can achieve high accuracy for anomalous users detection.
2022-01-10
Schrenk, Bernhard.  2021.  Simplified Synaptic Receptor for Coherent Optical Neural Networks. 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM). :1–2.
Advancing artificial neural networks to the coherent optical domain offers several advantages, such as a filterless synaptic interconnect with increased routing flexibility. Towards this direction, a coherent synaptic receptor with integrated multiplication function will be experimentally evaluated for a 1-GHz train of 130-ps spikes.
2022-04-19
Thushara, G A, Bhanu, S. Mary Saira.  2021.  A Survey on Secured Data Sharing Using Ciphertext Policy Attribute Based Encryption in Cloud. 2021 8th International Conference on Smart Computing and Communications (ICSCC). :170–177.
Cloud computing facilitates the access of applications and data from any location by using any device with an internet connection. It enables multiple applications and users to access the same data resources. Cloud based information sharing is a technique that allows researchers to communicate and collaborate, that leads to major new developments in the field. It also enables users to access data over the cloud easily and conveniently. Privacy, authenticity and confidentiality are the three main challenges while sharing data in cloud. There are many methods which support secure data sharing in cloud environment such as Attribute Based Encryption(ABE), Role Based Encryption, Hierarchical Based Encryption, and Identity Based Encryption. ABE provides secure access control mechanisms for integrity. It is classified as Key Policy Attribute Based Encryption(KP-ABE) and Ciphertext Policy Attribute Based Encryption(CP-ABE) based on access policy integration. In KPABE, access structure is incorporated with user's private key, and data are encrypted over a defined attributes. Moreover, in CPABE, access structure is embedded with ciphertext. This paper reviews CP-ABE methods that have been developed so far for achieving secured data sharing in cloud environment.
2022-04-18
Aivatoglou, Georgios, Anastasiadis, Mike, Spanos, Georgios, Voulgaridis, Antonis, Votis, Konstantinos, Tzovaras, Dimitrios.  2021.  A Tree-Based Machine Learning Methodology to Automatically Classify Software Vulnerabilities. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :312–317.
Software vulnerabilities have become a major problem for the security analysts, since the number of new vulnerabilities is constantly growing. Thus, there was a need for a categorization system, in order to group and handle these vulnerabilities in a more efficient way. Hence, the MITRE corporation introduced the Common Weakness Enumeration that is a list of the most common software and hardware vulnerabilities. However, the manual task of understanding and analyzing new vulnerabilities by security experts, is a very slow and exhausting process. For this reason, a new automated classification methodology is introduced in this paper, based on the vulnerability textual descriptions from National Vulnerability Database. The proposed methodology, combines textual analysis and tree-based machine learning techniques in order to classify vulnerabilities automatically. The results of the experiments showed that the proposed methodology performed pretty well achieving an overall accuracy close to 80%.
2022-06-08
Aksoy, Levent, Nguyen, Quang-Linh, Almeida, Felipe, Raik, Jaan, Flottes, Marie-Lise, Dupuis, Sophie, Pagliarini, Samuel.  2021.  High-level Intellectual Property Obfuscation via Decoy Constants. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–7.

This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as neural networks and filters, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoys. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) based attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants - instead of arbitrary circuit nodes - become key-protected.

2022-06-09
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
Mangino, Antonio, Bou-Harb, Elias.  2021.  A Multidimensional Network Forensics Investigation of a State-Sanctioned Internet Outage. 2021 International Wireless Communications and Mobile Computing (IWCMC). :813–818.
In November 2019, the government of Iran enforced a week-long total Internet blackout that prevented the majority of Internet connectivity into and within the nation. This work elaborates upon the Iranian Internet blackout by characterizing the event through Internet-scale, near realtime network traffic measurements. Beginning with an investigation of compromised machines scanning the Internet, nearly 50 TB of network traffic data was analyzed. This work discovers 856,625 compromised IP addresses, with 17,182 attributed to the Iranian Internet space. By the second day of the Internet shut down, these numbers dropped by 18.46% and 92.81%, respectively. Empirical analysis of the Internet-of-Things (IoT) paradigm revealed that over 90% of compromised Iranian hosts were fingerprinted as IoT devices, which saw a significant drop throughout the shutdown (96.17% decrease by the blackout's second day). Further examination correlates BGP reachability metrics and related data with geolocation databases to statistically evaluate the number of reachable Iranian ASNs (dropping from approximately 1100 to under 200 reachable networks). In-depth investigation reveals the top affected ASNs, providing network forensic evidence of the longitudinal unplugging of such key networks. Lastly, the impact's interruption of the Bitcoin cryptomining market is highlighted, disclosing a massive spike in unsuccessful (i.e., pending) transactions. When combined, these network traffic measurements provide a multidimensional perspective of the Iranian Internet shutdown.
2022-04-19
Mosteiro-Sanchez, Aintzane, Barcelo, Marc, Astorga, Jasone, Urbieta, Aitor.  2021.  Multi-Layered CP-ABE Scheme for Flexible Policy Update in Industry 4.0. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–4.
Industry 4.0 connectivity requires ensuring end-to-end (E2E) security for industrial data. This requirement is critical when retrieving data from the OT network. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) guarantees E2E security by encrypting data according to a policy and generating user keys according to attributes. To use this encryption scheme in manufacturing environments, policies must be updatable. This paper proposes a Multi-Layered Policy Key Encapsulation Method for CP-ABE that allows flexible policy update and revocation without modifying the original CP-ABE scheme.
Guo, Rui, Yang, Geng, Shi, Huixian, Zhang, Yinghui, Zheng, Dong.  2021.  O3-R-CP-ABE: An Efficient and Revocable Attribute-Based Encryption Scheme in the Cloud-Assisted IoMT System. IEEE Internet of Things Journal. 8:8949–8963.
With the processes of collecting, analyzing, and transmitting the data in the Internet of Things (IoT), the Internet of Medical Things (IoMT) comprises the medical equipment and applications connected to the healthcare system and offers an entity with real time, remote measurement, and analysis of healthcare data. However, the IoMT ecosystem deals with some great challenges in terms of security, such as privacy leaking, eavesdropping, unauthorized access, delayed detection of life-threatening episodes, and so forth. All these negative effects seriously impede the implementation of the IoMT ecosystem. To overcome these obstacles, this article presents an efficient, outsourced online/offline revocable ciphertext policy attribute-based encryption scheme with the aid of cloud servers and blockchains in the IoMT ecosystem. Our proposal achieves the characteristics of fine-grained access control, fast encryption, outsourced decryption, user revocation, and ciphertext verification. It is noteworthy that based on the chameleon hash function, we construct the private key of the data user with collision resistance, semantically secure, and key-exposure free to achieve revocation. To the best of our knowledge, this is the first protocol for a revocation mechanism by means of the chameleon hash function. Through formal analysis, it is proven to be secure in a selectively replayable chosen-ciphertext attack (RCCA) game. Finally, this scheme is implemented with the Java pairing-based cryptography library, and the simulation results demonstrate that it enables high efficiency and practicality, as well as strong reliability for the IoMT ecosystem.
Conference Name: IEEE Internet of Things Journal
Hwang, Yong-Woon, Lee, Im-Yeong.  2021.  A Study on CP-ABE Based Data Sharing System That Provides Signature-Based Verifiable Outsourcing. 2021 International Conference on Advanced Enterprise Information System (AEIS). :1–5.
Recently, with the development of the cloud environment, users can store their data or share it with other users. However, various security threats can occur in data sharing systems in the cloud environment. To solve this, data sharing systems and access control methods using the CP-ABE method are being studied, but the following problems may occur. First, in an outsourcing server that supports computation, it is not possible to prove that the computed result is a properly computed result when performing the partial decryption process of the ciphertext. Therefore, the user needs to verify the message obtained by performing the decryption process, and verify that the data is uploaded by the data owner through verification. As another problem, because the data owner encrypts data with attribute-based encryption, the number of attributes included in the access structure increases. This increases the size of the ciphertext, which can waste space in cloud storage. Therefore, a ciphertext of a constant size must be output regardless of the number of attributes when generating the ciphertext. In this paper, we proposes a CP-ABE based data sharing system that provides signature-based verifiable outsourcing. It aims at a system that allows multiple users to share data safely and efficiently in a cloud environment by satisfying verifiable outsourcing and constant-sized ciphertext output among various security requirements required by CP-ABE.
2021-12-21
Wu, Kehe, Shi, Jin, Guo, Zhimin, Zhang, Zheng, Cai, Junfei.  2021.  Research on Security Strategy of Power Internet of Things Devices Based on Zero-Trust. 2021 International Conference on Computer Engineering and Application (ICCEA). :79–83.
In order to guarantee the normal operation of the power Internet of things devices, the zero-trust idea was used for studying the security protection strategies of devices from four aspects: user authentication, equipment trust, application integrity and flow baselines. Firstly, device trust is constructed based on device portrait; then, verification of device application integrity based on MD5 message digest algorithm to achieve device application trustworthiness. Next, the terminal network traffic baselines are mined from OpenFlow, a southbound protocol in SDN. Finally, according to the dynamic user trust degree attribute access control model, the comprehensive user trust degree was obtained by weighting the direct trust degree. It obtained from user authentication and the trust degree of user access to terminal communication traffic. And according to the comprehensive trust degree, users are assigned the minimum authority to access the terminal to realize the security protection of the terminal. According to the comprehensive trust degree, the minimum permissions for users to access the terminal were assigned to achieve the security protection of the terminal. The research shows that the zero-trust mechanism is applied to the terminal security protection of power Internet of Things, which can improve the reliability of the safe operation of terminal equipment.
2022-01-10
Zheng, Shiji.  2021.  Network Intrusion Detection Model Based on Convolutional Neural Network. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:634–637.
Network intrusion detection is an important research direction of network security. The diversification of network intrusion mode and the increasing amount of network data make the traditional detection methods can not meet the requirements of the current network environment. The development of deep learning technology and its successful application in the field of artificial intelligence provide a new solution for network intrusion detection. In this paper, the convolutional neural network in deep learning is applied to network intrusion detection, and an intelligent detection model which can actively learn is established. The experiment on KDD99 data set shows that it can effectively improve the accuracy and adaptive ability of intrusion detection, and has certain effectiveness and advancement.
Agarwal, Shivam, Khatter, Kiran, Relan, Devanjali.  2021.  Security Threat Sounds Classification Using Neural Network. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :690–694.
Sound plays a key role in human life and therefore sound recognition system has a great future ahead. Sound classification and identification system has many applications such as system for personal security, critical surveillance, etc. The main aim of this paper is to detect and classify the security sound event using the surveillance camera systems with integrated microphone based on the generated spectrograms of the sounds. This will enable to track security events in cases of emergencies. The goal is to propose a security system to accurately detect sound events and make a better security sound event detection system. We propose to use a convolutional neural network (CNN) to design the security sound detection system to detect a security event with minimal sound. We used the spectrogram images to train the CNN. The neural network was trained using different security sounds data which was then used to detect security sound events during testing phase. We used two datasets for our experiment training and testing datasets. Both the datasets contain 3 different sound events (glass break, gun shots and smoke alarms) to train and test the model, respectively. The proposed system yields the good accuracy for the sound event detection even with minimum available sound data. The designed system achieved accuracy was 92% and 90% using CNN on training dataset and testing dataset. We conclude that the proposed sound classification framework which using the spectrogram images of sounds can be used efficiently to develop the sound classification and recognition systems.
2021-12-21
Hatakeyama, Koudai, Kotani, Daisuke, Okabe, Yasuo.  2021.  Zero Trust Federation: Sharing Context under User Control towards Zero Trust in Identity Federation. 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops). :514–519.
Perimeter models, which provide access control for protecting resources on networks, make authorization decisions using the source network of access requests as one of critical factors. However, such models are problematic because once a network is intruded, the attacker gains access to all of its resources. To overcome the above problem, a Zero Trust Network (ZTN) is proposed as a new security model in which access control is performed by authenticating users who request access and then authorizing such requests using various information about users and devices called contexts. To correctly make authorization decisions, this model must take a large amount of various contexts into account. However, in some cases, an access control mechanism cannot collect enough context to make decisions, e.g., when an organization that enforces access control joins the identity federation and uses systems operated by other organizations. This is because the contexts collected using the systems are stored in individual systems and no federation exists for sharing contexts. In this study, we propose the concept of a Zero Trust Federation (ZTF), which applies the concept of ZTN under the identity federation, and a method for sharing context among systems of organizations. Since context is sensitive to user privacy, we also propose a mechanism for sharing contexts under user control. We also verify context sharing by implementing a ZTF prototype.
Zhang, Fengqing, Jiang, Xiaoning.  2021.  The Zero Trust Security Platform for Data Trusteeship. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :1014–1017.
Cloud storage is a low-cost and convenient storage method, but the nature of cloud storage determines the existence of security risks for data uploaded by users. In order to ensure the security of users' data in third-party cloud platforms, a zero trust security platform for data trusteeship is proposed. The platform introduces the concept of zero trust, which meets the needs of users to upload sensitive data to untrusted third-party cloud platforms by implementing multiple functional modules such as sensitivity analysis service, cipher index service, attribute encryption service.
2022-06-07
Sun, Degang, Liu, Meichen, Li, Meimei, Shi, Zhixin, Liu, Pengcheng, Wang, Xu.  2021.  DeepMIT: A Novel Malicious Insider Threat Detection Framework based on Recurrent Neural Network. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :335–341.
Currently, more and more malicious insiders are making threats, and the detection of insider threats is becoming more challenging. The malicious insider often uses legitimate access privileges and mimic normal behaviors to evade detection, which is difficult to be detected via using traditional defensive solutions. In this paper, we propose DeepMIT, a malicious insider threat detection framework, which utilizes Recurrent Neural Network (RNN) to model user behaviors as time sequences and predict the probabilities of anomalies. This framework allows DeepMIT to continue learning, and the detections are made in real time, that is, the anomaly alerts are output as rapidly as data input. Also, our framework conducts further insight of the anomaly scores and provides the contributions to the scores and, thus, significantly helps the operators to understand anomaly scores and take further steps quickly(e.g. Block insider's activity). In addition, DeepMIT utilizes user-attributes (e.g. the personality of the user, the role of the user) as categorical features to identify the user's truly typical behavior, which help detect malicious insiders who mimic normal behaviors. Extensive experimental evaluations over a public insider threat dataset CERT (version 6.2) have demonstrated that DeepMIT has outperformed other existing malicious insider threat solutions.
2022-02-25
Xie, Bing, Tan, Zilong, Carns, Philip, Chase, Jeff, Harms, Kevin, Lofstead, Jay, Oral, Sarp, Vazhkudai, Sudharshan S., Wang, Feiyi.  2021.  Interpreting Write Performance of Supercomputer I/O Systems with Regression Models. 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :557—566.

This work seeks to advance the state of the art in HPC I/O performance analysis and interpretation. In particular, we demonstrate effective techniques to: (1) model output performance in the presence of I/O interference from production loads; (2) build features from write patterns and key parameters of the system architecture and configurations; (3) employ suitable machine learning algorithms to improve model accuracy. We train models with five popular regression algorithms and conduct experiments on two distinct production HPC platforms. We find that the lasso and random forest models predict output performance with high accuracy on both of the target systems. We also explore use of the models to guide adaptation in I/O middleware systems, and show potential for improvements of at least 15% from model-guided adaptation on 70% of samples, and improvements up to 10 x on some samples for both of the target systems.

2022-04-18
Paul, Rajshakhar, Turzo, Asif Kamal, Bosu, Amiangshu.  2021.  Why Security Defects Go Unnoticed During Code Reviews? A Case-Control Study of the Chromium OS Project 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1373–1385.
Peer code review has been found to be effective in identifying security vulnerabilities. However, despite practicing mandatory code reviews, many Open Source Software (OSS) projects still encounter a large number of post-release security vulnerabilities, as some security defects escape those. Therefore, a project manager may wonder if there was any weakness or inconsistency during a code review that missed a security vulnerability. Answers to this question may help a manager pinpointing areas of concern and taking measures to improve the effectiveness of his/her project's code reviews in identifying security defects. Therefore, this study aims to identify the factors that differentiate code reviews that successfully identified security defects from those that missed such defects. With this goal, we conduct a case-control study of Chromium OS project. Using multi-stage semi-automated approaches, we build a dataset of 516 code reviews that successfully identified security defects and 374 code reviews where security defects escaped. The results of our empirical study suggest that the are significant differences between the categories of security defects that are identified and that are missed during code reviews. A logistic regression model fitted on our dataset achieved an AUC score of 0.91 and has identified nine code review attributes that influence identifications of security defects. While time to complete a review, the number of mutual reviews between two developers, and if the review is for a bug fix have positive impacts on vulnerability identification, opposite effects are observed from the number of directories under review, the number of total reviews by a developer, and the total number of prior commits for the file under review.
2021-12-21
Zhang, Pengfeng, Tian, Chuan, Shang, Tao, Liu, Lin, Li, Lei, Wang, Wenting, Zhao, Yiming.  2021.  Dynamic Access Control Technology Based on Zero-Trust Light Verification Network Model. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :712–715.
With the rise of the cloud computing and services, the network environments tend to be more complex and enormous. Security control becomes more and more hard due to the frequent and various access and requests. There are a few techniques to solve the problem which developed separately in the recent years. Network Micro-Segmentation provides the system the ability to keep different parts separated. Zero Trust Model ensures the network is access to trusted users and business by applying the policy that verify and authenticate everything. With the combination of Segmentation and Zero Trust Model, a system will obtain the ability to control the access to organizations' or industrial valuable assets. To implement the cooperation, the paper designs a strategy named light verification to help the process to be painless for the cost of inspection. The strategy was found to be effective from the perspective of the technical management, security and usability.