Biblio

Found 1049 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2021-12-21
Chen, Lu, Dai, Zaojian, CHEN, Mu, Li, Nige.  2021.  Research on the Security Protection Framework of Power Mobile Internet Services Based on Zero Trust. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :65–68.
Under the background of increasingly severe security situation, the new working mode of power mobile internet business anytime and anywhere has greatly increased the complexity of network interaction. At the same time, various means of breaking through the boundary protection and moving laterally are emerging in an endless stream. The existing boundary-based mobility The security protection architecture is difficult to effectively respond to the current complex and diverse network attacks and threats, and faces actual combat challenges. This article first analyzes the security risks faced by the existing power mobile Internet services, and conducts a collaborative analysis of the key points of zero-trust based security protection from multiple perspectives such as users, terminals, and applications; on this basis, from identity security authentication, continuous trust evaluation, and fine-grained access The dimension of control, fine-grained access control based on identity trust, and the design of a zero-trust-based power mobile interconnection business security protection framework to provide theoretical guidance for power mobile business security protection.
2022-01-25
He, YaChen, Dong, Guishan, Liu, Dong, Peng, Haiyang, Chen, Yuxiang.  2021.  Access Control Scheme Supporting Attribute Revocation in Cloud Computing. 2021 International Conference on Networking and Network Applications (NaNA). :379–384.
To break the data barrier of the information island and explore the value of data in the past few years, it has become a trend of uploading data to the cloud by data owners for data sharing. At the same time, they also hope that the uploaded data can still be controlled, which makes access control of cloud data become an intractable problem. As a famous cryptographic technology, ciphertext policy-based attribute encryption (CP-ABE) not only assures data confidentiality but implements fine-grained access control. However, the actual application of CP-ABE has its inherent challenge in attribute revocation. To address this challenge, we proposed an access control solution supporting attribute revocation in cloud computing. Unlike previous attribute revocation schemes, to solve the problem of excessive attribute revocation overhead, we use symmetric encryption technology to encrypt the plaintext data firstly, and then, encrypting the symmetric key by utilizing public-key encryption technology according to the access structure, so that only the key ciphertext is necessary to update when the attributes are revoked, which reduces the spending of ciphertext update to a great degree. The comparative analysis demonstrates that our solution is reasonably efficient and more secure to support attribute revocation and access control after data sharing.
2022-04-18
Kang, Ji, Sun, Yi, Xie, Hui, Zhu, Xixi, Ding, Zhaoyun.  2021.  Analysis System for Security Situation in Cyberspace Based on Knowledge Graph. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :385–392.
With the booming of Internet technology, the continuous emergence of new technologies and new algorithms greatly expands the application boundaries of cyberspace. While enjoying the convenience brought by informatization, the society is also facing increasingly severe threats to the security of cyberspace. In cyber security defense, cyberspace operators rely on the discovered vulnerabilities, attack patterns, TTPs, and other knowledge to observe, analyze and determine the current threats to the network and security situation in cyberspace, and then make corresponding decisions. However, most of such open-source knowledge is distributed in different data sources in the form of text or web pages, which is not conducive to the understanding, query and correlation analysis of cyberspace operators. In this paper, a knowledge graph for cyber security is constructed to solve this problem. At first, in the process of obtaining security data from multi-source heterogeneous cyberspaces, we adopt efficient crawler to crawl the required data, paving the way for knowledge graph building. In order to establish the ontology required by the knowledge graph, we abstract the overall framework of security data sources in cyberspace, and depict in detail the correlations among various data sources. Then, based on the \$$\backslash$mathbfOWL +$\backslash$mathbfSWRL\$ language, we construct the cyber security knowledge graph. On this basis, we design an analysis system for situation in cyberspace based on knowledge graph and the Snort intrusion detection system (IDS), and study the rules in Snort. The system integrates and links various public resources from the Internet, including key information such as general platforms, vulnerabilities, weaknesses, attack patterns, tactics, techniques, etc. in real cyberspace, enabling the provision of comprehensive, systematic and rich cyber security knowledge to security researchers and professionals, with the expectation to provide a useful reference for cyber security defense.
2022-06-07
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2022-04-18
Ahmed-Zaid, Said, Loo, Sin Ming, Valdepena-Delgado, Andres, Beam, Theron.  2021.  Cyber-Physical Security Assessment and Resilience of a Microgrid Testbed. 2021 Resilience Week (RWS). :1–3.
In order to identify potential weakness in communication and data in transit, a microgrid testbed is being developed at Boise State University. This testbed will be used to verify microgrid models and communication methods in an effort to increase the resiliency of these systems to cyber-attacks. If vulnerabilities are found in these communication methods, then risk mitigation techniques will be developed to address them.
2022-06-08
Wang, Runhao, Kang, Jiexiang, Yin, Wei, Wang, Hui, Sun, Haiying, Chen, Xiaohong, Gao, Zhongjie, Wang, Shuning, Liu, Jing.  2021.  DeepTrace: A Secure Fingerprinting Framework for Intellectual Property Protection of Deep Neural Networks. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :188–195.

Deep Neural Networks (DNN) has gained great success in solving several challenging problems in recent years. It is well known that training a DNN model from scratch requires a lot of data and computational resources. However, using a pre-trained model directly or using it to initialize weights cost less time and often gets better results. Therefore, well pre-trained DNN models are valuable intellectual property that we should protect. In this work, we propose DeepTrace, a framework for model owners to secretly fingerprinting the target DNN model using a special trigger set and verifying from outputs. An embedded fingerprint can be extracted to uniquely identify the information of model owner and authorized users. Our framework benefits from both white-box and black-box verification, which makes it useful whether we know the model details or not. We evaluate the performance of DeepTrace on two different datasets, with different DNN architectures. Our experiment shows that, with the advantages of combining white-box and black-box verification, our framework has very little effect on model accuracy, and is robust against different model modifications. It also consumes very little computing resources when extracting fingerprint.

2022-06-07
Graham, Martin, Kukla, Robert, Mandrychenko, Oleksii, Hart, Darren, Kennedy, Jessie.  2021.  Developing Visualisations to Enhance an Insider Threat Product: A Case Study. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec). :47–57.
This paper describes the process of developing data visualisations to enhance a commercial software platform for combating insider threat, whose existing UI, while perfectly functional, was limited in its ability to allow analysts to easily spot the patterns and outliers that visualisation naturally reveals. We describe the design and development process, proceeding from initial tasks/requirements gathering, understanding the platform’s data formats, the rationale behind the visualisations’ design, and then refining the prototype through gathering feedback from representative domain experts who are also current users of the software. Through a number of example scenarios, we show that the visualisation can support the identified tasks and aid analysts in discovering and understanding potentially risky insider activity within a large user base.
He, Weiyu, Wu, Xu, Wu, Jingchen, Xie, Xiaqing, Qiu, Lirong, Sun, Lijuan.  2021.  Insider Threat Detection Based on User Historical Behavior and Attention Mechanism. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :564–569.
Insider threat makes enterprises or organizations suffer from the loss of property and the negative influence of reputation. User behavior analysis is the mainstream method of insider threat detection, but due to the lack of fine-grained detection and the inability to effectively capture the behavior patterns of individual users, the accuracy and precision of detection are insufficient. To solve this problem, this paper designs an insider threat detection method based on user historical behavior and attention mechanism, including using Long Short Term Memory (LSTM) to extract user behavior sequence information, using Attention-based on user history behavior (ABUHB) learns the differences between different user behaviors, uses Bidirectional-LSTM (Bi-LSTM) to learn the evolution of different user behavior patterns, and finally realizes fine-grained user abnormal behavior detection. To evaluate the effectiveness of this method, experiments are conducted on the CMU-CERT Insider Threat Dataset. The experimental results show that the effectiveness of this method is 3.1% to 6.3% higher than that of other comparative model methods, and it can detect insider threats in different user behaviors with fine granularity.
2022-09-20
Samy, Salma, Banawan, Karim, Azab, Mohamed, Rizk, Mohamed.  2021.  Smart Blockchain-based Control-data Protection Framework for Trustworthy Smart Grid Operations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0963—0969.
The critical nature of smart grids (SGs) attracts various network attacks and malicious manipulations. Existent SG solutions are less capable of ensuring secure and trustworthy operation. This is due to the large-scale nature of SGs and reliance on network protocols for trust management. A particular example of such severe attacks is the false data injection (FDI). FDI refers to a network attack, where meters' measurements are manipulated before being reported in such a way that the energy system takes flawed decisions. In this paper, we exploit the secure nature of blockchains to construct a data management framework based on public blockchain. Our framework enables trustworthy data storage, verification, and exchange between SG components and decision-makers. Our proposed system enables miners to invest their computational power to verify blockchain transactions in a fully distributed manner. The mining logic employs machine learning (ML) techniques to identify the locations of compromised meters in the network, which are responsible for generating FDI attacks. In return, miners receive virtual credit, which may be used to pay their electric bills. Our design circumvents single points of failure and intentional FDI attempts. Our numerical results compare the accuracy of three different ML-based mining logic techniques in two scenarios: focused and distributed FDI attacks for different attack levels. Finally, we proposed a majority-decision mining technique for the practical case of an unknown FDI attack level.
Yan, Weili, Lou, Xin, Yau, David K.Y., Yang, Ying, Saifuddin, Muhammad Ramadan, Wu, Jiyan, Winslett, Marianne.  2021.  A Stealthier False Data Injection Attack against the Power Grid. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :108—114.
We use discrete-time adaptive control theory to design a novel false data injection (FDI) attack against automatic generation control (AGC), a critical system that maintains a power grid at its requisite frequency. FDI attacks can cause equipment damage or blackouts by falsifying measurements in the streaming sensor data used to monitor the grid's operation. Compared to prior work, the proposed attack (i) requires less knowledge on the part of the attacker, such as correctly forecasting the future demand for power; (ii) is stealthier in its ability to bypass standard methods for detecting bad sensor data and to keep the false sensor readings near historical norms until the attack is well underway; and (iii) can sustain the frequency excursion as long as needed to cause real-world damage, in spite of AGC countermeasures. We validate the performance of the proposed attack on realistic 37-bus and 118-bus setups in PowerWorld, an industry-strength power system simulator trusted by real-world operators. The results demonstrate the attack's improved stealthiness and effectiveness compared to prior work.
2022-01-25
Geng, Zhang, Yanan, Wang, Guojing, Liu, Xueqing, Wang, Kaiqiang, Gao, Jiye, Wang.  2021.  A Trusted Data Storage and Access Control Scheme for Power CPS Combining Blockchain and Attribute-Based Encryption. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :355–359.
The traditional data storage method often adopts centralized architecture, which is prone to trust and security problems. This paper proposes a trusted data storage and access control scheme combining blockchain and attribute-based encryption, which allow cyber-physical system (CPS) nodes to realize the fine-grained access control strategy. At the same time, this paper combines the blockchain technology with distributed storage, and only store the access control policy and the data access address on the blockchain, which solves the storage bottleneck of blockchain system. Furthermore, this paper proposes a novel multi-authority attributed-based identification method, which realizes distributed attribute key generation and simplifies the pairwise authentication process of multi-authority. It can not only address the key escrow problem of one single authority, but also reduce the problem of high communication overhead and heavy burden of multi-authority. The analyzed results show that the proposed scheme has better comprehensive performance in trusted data storage and access control for power cyber-physical system.
2021-12-21
Oliver, Ian.  2021.  Trust, Security and Privacy through Remote Attestation in 5G and 6G Systems. 2021 IEEE 4th 5G World Forum (5GWF). :368–373.
Digitalisation of domains such as medical and railway utilising cloud and networking technologies such as 5G and forthcoming 6G systems presents additional security challenges. The establishment of the identity, integrity and provenance of devices, services and other functional components removed a number of attack vectors and addresses a number of so called zero-trust security requirements. The addition of trusted hardware, such as TPM, and related remote attestation integrated with the networking and cloud infrastructure will be necessary requirement.
2022-04-19
Abdollahi, Sina, Mohajeri, Javad, Salmasizadeh, Mahmoud.  2021.  Highly Efficient and Revocable CP-ABE with Outsourcing Decryption for IoT. 2021 18th International ISC Conference on Information Security and Cryptology (ISCISC). :81–88.
In IoT scenarios, computational and communication costs on the user side are important problems. In most expressive ABE schemes, there is a linear relationship between the access structure size and the number of heavy pairing operations that are used in the decryption process. This property limits the application of ABE. We propose an expressive CP-ABE with the constant number of pairings in the decryption process. The simulation shows that the proposed scheme is highly efficient in encryption and decryption processes. In addition, we use the outsourcing method in decryption to get better performance on the user side. The main burden of decryption computations is done by the cloud without revealing any information about the plaintext. We introduce a new revocation method. In this method, the users' communication channels aren't used during the revocation process. These features significantly reduce the computational and communication costs on the user side that makes the proposed scheme suitable for applications such as IoT. The proposed scheme is selectively CPA-secure in the standard model.
2022-02-03
Huang, Chao, Luo, Wenhao, Liu, Rui.  2021.  Meta Preference Learning for Fast User Adaptation in Human-Supervisory Multi-Robot Deployments. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :5851—5856.
As multi-robot systems (MRS) are widely used in various tasks such as natural disaster response and social security, people enthusiastically expect an MRS to be ubiquitous that a general user without heavy training can easily operate. However, humans have various preferences on balancing between task performance and safety, imposing different requirements onto MRS control. Failing to comply with preferences makes people feel difficult in operation and decreases human willingness of using an MRS. Therefore, to improve social acceptance as well as performance, there is an urgent need to adjust MRS behaviors according to human preferences before triggering human corrections, which increases cognitive load. In this paper, a novel Meta Preference Learning (MPL) method was developed to enable an MRS to fast adapt to user preferences. MPL based on meta learning mechanism can quickly assess human preferences from limited instructions; then, a neural network based preference model adjusts MRS behaviors for preference adaption. To validate method effectiveness, a task scenario "An MRS searches victims in an earthquake disaster site" was designed; 20 human users were involved to identify preferences as "aggressive", "medium", "reserved"; based on user guidance and domain knowledge, about 20,000 preferences were simulated to cover different operations related to "task quality", "task progress", "robot safety". The effectiveness of MPL in preference adaption was validated by the reduced duration and frequency of human interventions.
2022-02-25
Bolbol, Noor, Barhoom, Tawfiq.  2021.  Mitigating Web Scrapers using Markup Randomization. 2021 Palestinian International Conference on Information and Communication Technology (PICICT). :157—162.

Web Scraping is the technique of extracting desired data in an automated way by scanning the internal links and content of a website, this activity usually performed by systematically programmed bots. This paper explains our proposed solution to protect the blog content from theft and from being copied to other destinations by mitigating the scraping bots. To achieve our purpose we applied two steps in two levels, the first one, on the main blog page level, mitigated the work of crawler bots by adding extra empty articles anchors among real articles, and the next step, on the article page level, we add a random number of empty and hidden spans with randomly generated text among the article's body. To assess this solution we apply it to a local project developed using PHP language in Laravel framework, and put four criteria that measure the effectiveness. The results show that the changes in the file size before and after the application do not affect it, also, the processing time increased by few milliseconds which still in the acceptable range. And by using the HTML-similarity tool we get very good results that show the symmetric over style, with a few bit changes over the structure. Finally, to assess the effects on the bots, scraper bot reused and get the expected results from the programmed middleware. These results show that the solution is feasible to be adopted and use to protect blogs content.

2022-09-20
Rajput, Prashant Hari Narayan, Sarkar, Esha, Tychalas, Dimitrios, Maniatakos, Michail.  2021.  Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
2022-04-18
Bonatti, Piero A., Sauro, Luigi, Langens, Jonathan.  2021.  Representing Consent and Policies for Compliance. 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :283–291.
Being compliant with the GDPR (and data protection regulations in general) is a difficult task, that calls for manifold, computer-based automated support. In this context, several use cases related to the management and the enforcement of privacy policies and consent call for a machine-understandable policy language, equipped with reliable algorithms for compliance checking and explanations. In this paper, we outline a set of requirements for such languages and algorithms, and address such requirements with a framework based on a profile of OWL2 and a set of policy serializations based on popular formats such as ODRL and JSON. Such ``external'' policy syntax is translated into the ``internal'' OWL2 syntax, thereby enabling semantic compliance checking and explanations using specialized OWL2 reasoners. We provide a precise definition of both the OWL2 profile and the external policy language based on JSON.
2022-02-03
Rishikesh, Bhattacharya, Ansuman, Thakur, Atul, Banda, Gourinath, Ray, Rajarshi, Halder, Raju.  2021.  Secure Communication System Implementation for Robot-based Surveillance Applications. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). :270—275.
Surveillance systems involve a camera module (at a fixed location) connected/streaming video via Internet Protocol to a (video) server. In our IMPRINT consortium project, by mounting miniaturised camera module/s on mobile quadruped-lizard like robots, we developed a stealth surveillance system, which could be very useful as a monitoring system in hostage situations. In this paper, we report about the communication system that enables secure transmission of: Live-video from robots to a server, GPS-coordinates of robots to the server and Navigation-commands from server to robots. Since the end application is for stealth surveillance, often can involve sensitive data, data security is a crucial concern, especially when data is transmitted through the internet. We use the RC4 algorithm for video transmission; while the AES algorithm is used for GPS data and other commands’ data transmission. Advantages of the developed system is easy to use for its web interface which is provided on the control station. This communication system, because of its internet-based communication, it is compatible with any operating system environment. The lightweight program runs on the control station (on the server side) and robot body that leads to less memory consumption and faster processing. An important requirement in such hostage surveillance systems is fast data processing and data-transmission rate. We have implemented this communication systems with a single-board computer having GPU that performs better in terms of speed of transmission and processing of data.
2021-12-21
Rodigari, Simone, O'Shea, Donna, McCarthy, Pat, McCarry, Martin, McSweeney, Sean.  2021.  Performance Analysis of Zero-Trust Multi-Cloud. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). :730–732.
Zero Trust security model permits to secure cloud native applications while encrypting all network communication, authenticating, and authorizing every request. The service mesh can enable Zero Trust using a side-car proxy without changes to the application code. To the best of our knowledge, no previous work has provided a performance analysis of Zero Trust in a multi-cloud environment. This paper proposes a multi-cloud framework and a testing workflow to analyse performance of the data plane under load and the impact on the control plane, when Zero Trust is enabled. The results of preliminary tests show that Istio has reduced latency variability in responding to sequential HTTP requests. Results also reveal that the overall CPU and memory usage can increase based on service mesh configuration and the cloud environment.
Bertino, Elisa, Brancik, Kenneth.  2021.  Services for Zero Trust Architectures - A Research Roadmap. 2021 IEEE International Conference on Web Services (ICWS). :14–20.
The notion of Zero Trust Architecture (ZTA) has been introduced as a fine-grained defense approach. It assumes that no entities outside and inside the protected system can be trusted and therefore requires articulated and high-coverage deployment of security controls. However, ZTA is a complex notion which does not have a single design solution; rather it consists of numerous interconnected concepts and processes that need to be assessed prior to deciding on a solution. In this paper, we outline a ZTA design methodology based on cyber risks and the identification of known high security risks. We then discuss challenges related to the design and deployment of ZTA and related solutions. We also discuss the role that service technology can play in ZTA.
2021-05-25
Fang, Ying, Gu, Tianlong, Chang, Liang, Li, Long.  2020.  Algebraic Decision Diagram-Based CP-ABE with Constant Secret and Fast Decryption. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :98–106.
Ciphertext-policy attribute-based encryption (CP-ABE) is applied to many data service platforms to provides secure and fine-grained access control. In this paper, a new CP-ABE system based on the algebraic decision diagram (ADD) is presented. The new system makes full use of both the powerful description ability and the high calculating efficiency of ADD to improves the performance and efficiency of algorithms contained in CP-ABE. First, the new system supports both positive and negative attributes in the description of access polices. Second, the size of the secret key is constant and is not affected by the number of attributes. Third, time complexity of the key generation and decryption algorithms are O(1). Finally, this scheme allows visitors to have different access permissions to access shared data or file. At the same time, PV operation is introduced into CP-ABE framework for the first time to prevent resource conflicts caused by read and write operations on shared files. Compared with other schemes, the new scheme proposed in this paper performs better in function and efficiency.
2021-05-13
Mahmoud, Loreen, Praveen, Raja.  2020.  Artificial Neural Networks for detecting Intrusions: A survey. 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :41–48.
Nowadays, the networks attacks became very sophisticated and hard to be recognized, The traditional types of intrusion detection systems became inefficient in predicting new types of attacks. As the IDS is an important factor in securing the network in the real time, many new effective IDS approaches have been proposed. In this paper, we intend to discuss different Artificial Neural Networks based IDS approaches, also we are going to categorize them in four categories (normal ANN, DNN, CNN, RNN) and make a comparison between them depending on different performance parameters (accuracy, FNR, FPR, training time, epochs and the learning rate) and other factors like the network structure, the classification type, the used dataset. At the end of the survey, we will mention the merits and demerits of each approach and suggest some enhancements to avoid the noticed drawbacks.
2021-08-11
Chen, Siyuan, Jung, Jinwook, Song, Peilin, Chakrabarty, Krishnendu, Nam, Gi-Joon.  2020.  BISTLock: Efficient IP Piracy Protection using BIST. 2020 IEEE International Test Conference (ITC). :1—5.
The globalization of IC manufacturing has increased the likelihood for IP providers to suffer financial and reputational loss from IP piracy. Logic locking prevents IP piracy by corrupting the functionality of an IP unless a correct secret key is inserted. However, existing logic-locking techniques can impose significant area overhead and performance impact (delay and power) on designs. In this work, we propose BISTLock, a logic-locking technique that utilizes built-in self-test (BIST) to isolate functional inputs when the circuit is locked. We also propose a set of security metrics and use the proposed metrics to quantify BISTLock's security strength for an open-source AES core. Our experimental results demonstrate that BISTLock is easy to implement and introduces an average of 0.74% area and no power or delay overhead across the set of benchmarks used for evaluation.
2021-06-28
Oualhaj, Omar Ait, Mohamed, Amr, Guizani, Mohsen, Erbad, Aiman.  2020.  Blockchain Based Decentralized Trust Management framework. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2210–2215.
The blockchain is a storage technology and transmission of information, transparent, secure, and operating without central control. In this paper, we propose a new decentralized trust management and cooperation model where data is shared via blockchain and we explore the revenue distribution under different consensus schemes. To reduce the power calculation with respect to the control mechanism, our proposal adopts the possibility of Proof on Trust (PoT) and Proof of proof-of-stake based trust to replace the proof of work (PoW) scheme, to carry out the mining and storage of new data blocks. To detect nodes with malicious behavior to provide false system information, the trust updating algorithm is proposed..
2021-08-11
Chheng, Kimhok, Priyadi, Ardyono, Pujiantara, Margo, Mahindara, Vincentius Raki.  2020.  The Coordination of Dual Setting DOCR for Ring System Using Adaptive Modified Firefly Algorithm. 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA). :44—50.
Directional Overcurrent Relays (DOCRs) play an essential role in the power system protection to guarantee the reliability, speed of relay operation and avoiding mal-trip in the primary and backup relays when unintentional fault conditions occur in the system. Moreover, the dual setting protection scheme is more efficient protection schemes for offering fast response protection and providing flexibility in the coordination of relay. In this paper, the Adaptive Modified Firefly Algorithm (AMFA) is used to determine the optimal coordination of dual setting DOCRs in the ring distribution system. The AMFA is completed by choosing the minimum value of pickup current (\textbackslashtextbackslashpmbI\textbackslashtextbackslashpmbP) and time dial setting (TDS). On the other hand, dual setting DOCRs protection scheme also proposed for operating in both forward and reverse directions that consisted of individual time current characteristics (TCC) curve for each direction. The previous method is applied to the ring distribution system network of PT. Pupuk Sriwidjaja by considering the fault on each bus. The result illustration that the AMFA within dual setting protection scheme is significantly reaching the optimized coordination and the relay coordination is certain for all simulation scenarios with the minimum operation. The AMFA has been successfully implemented in MATLAB software programming.