Biblio

Filters: Keyword is Cognition  [Clear All Filters]
2021-06-01
Patnaikuni, Shrinivasan, Gengaje, Sachin.  2020.  Properness and Consistency of Syntactico-Semantic Reasoning using PCFG and MEBN. 2020 International Conference on Communication and Signal Processing (ICCSP). :0554–0557.
The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) theory, which is a first-order logic for modelling probabilistic knowledge bases. The principle of semantic compositionality states that meaning of compound expressions is dependent on meanings of constituent expressions forming the compound expression. Typical pattern analysis applications focus on syntactic patterns ignoring semantic patterns governing the domain in which pattern analysis is attempted. The paper introduces the concepts and terminologies of the mapping between PCFG and MEBN theory. Further the paper outlines a modified version of CYK parser algorithm for parsing PCFG derivations driven by MEBN. Using Kullback- Leibler divergence an outline for proving properness and consistency of the PCFG mapped with MEBN is discussed.
2021-10-12
Muller, Tim, Wang, Dongxia, Sun, Jun.  2020.  Provably Robust Decisions based on Potentially Malicious Sources of Information. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :411–424.
Sometimes a security-critical decision must be made using information provided by peers. Think of routing messages, user reports, sensor data, navigational information, blockchain updates. Attackers manifest as peers that strategically report fake information. Trust models use the provided information, and attempt to suggest the correct decision. A model that appears accurate by empirical evaluation of attacks may still be susceptible to manipulation. For a security-critical decision, it is important to take the entire attack space into account. Therefore, we define the property of robustness: the probability of deciding correctly, regardless of what information attackers provide. We introduce the notion of realisations of honesty, which allow us to bypass reasoning about specific feedback. We present two schemes that are optimally robust under the right assumptions. The “majority-rule” principle is a special case of the other scheme which is more general, named “most plausible realisations”.
2021-02-03
Ye, S., Feigh, K., Howard, A..  2020.  Learning in Motion: Dynamic Interactions for Increased Trust in Human-Robot Interaction Games. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1186—1189.

Embodiment of actions and tasks has typically been analyzed from the robot's perspective where the robot's embodiment helps develop and maintain trust. However, we ask a similar question looking at the interaction from the human perspective. Embodied cognition has been shown in the cognitive science literature to produce increased social empathy and cooperation. To understand how human embodiment can help develop and increase trust in human-robot interactions, we created conducted a study where participants were tasked with memorizing greek letters associated with dance motions with the help of a humanoid robot. Participants either performed the dance motion or utilized a touch screen during the interaction. The results showed that participants' trust in the robot increased at a higher rate during human embodiment of motions as opposed to utilizing a touch screen device.

2021-02-16
Kowalski, P., Zocholl, M., Jousselme, A.-L..  2020.  Explainability in threat assessment with evidential networks and sensitivity spaces. 2020 IEEE 23rd International Conference on Information Fusion (FUSION). :1—8.
One of the main threats to the underwater communication cables identified in the recent years is possible tampering or damage by malicious actors. This paper proposes a solution with explanation abilities to detect and investigate this kind of threat within the evidence theory framework. The reasoning scheme implements the traditional “opportunity-capability-intent” threat model to assess a degree to which a given vessel may pose a threat. The scenario discussed considers a variety of possible pieces of information available from different sources. A source quality model is used to reason with the partially reliable sources and the impact of this meta-information on the overall assessment is illustrated. Examples of uncertain relationships between the relevant variables are modelled and the constructed model is used to investigate the probability of threat of four vessels of different types. One of these cases is discussed in more detail to demonstrate the explanation abilities. Explanations about inference are provided thanks to sensitivity spaces in which the impact of the different pieces of information on the reasoning are compared.
2021-01-18
Huitzil, I., Fuentemilla, Á, Bobillo, F..  2020.  I Can Get Some Satisfaction: Fuzzy Ontologies for Partial Agreements in Blockchain Smart Contracts. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
This paper proposes a novel extension of blockchain systems with fuzzy ontologies. The main advantage is to let the users have flexible restrictions, represented using fuzzy sets, and to develop smart contracts where there is a partial agreement among the involved parts. We propose a general architecture based on four fuzzy ontologies and a process to develop and run the smart contracts, based on a reduction to a well-known fuzzy ontology reasoning task (Best Satisfiability Degree). We also investigate different operators to compute Pareto-optimal solutions and implement our approach in the Ethereum blockchain.
2021-03-01
Meskauskas, Z., Jasinevicius, R., Kazanavicius, E., Petrauskas, V..  2020.  XAI-Based Fuzzy SWOT Maps for Analysis of Complex Systems. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
The classical SWOT methodology and many of the tools based on it used so far are very static, used for one stable project and lacking dynamics [1]. This paper proposes the idea of combining several SWOT analyses enriched with computing with words (CWW) paradigm into a single network. In this network, individual analysis of the situation is treated as the node. The whole structure is based on fuzzy cognitive maps (FCM) that have forward and backward chaining, so it is called fuzzy SWOT maps. Fuzzy SWOT maps methodology newly introduces the dynamics that projects are interacting, what exists in a real dynamic environment. The whole fuzzy SWOT maps network structure has explainable artificial intelligence (XAI) traits because each node in this network is a "white box"-all the reasoning chain can be tracked and checked why a particular decision has been made, which increases explainability by being able to check the rules to determine why a particular decision was made or why and how one project affects another. To confirm the vitality of the approach, a case with three interacting projects has been analyzed with a developed prototypical software tool and results are delivered.
2021-06-01
Materzynska, Joanna, Xiao, Tete, Herzig, Roei, Xu, Huijuan, Wang, Xiaolong, Darrell, Trevor.  2020.  Something-Else: Compositional Action Recognition With Spatial-Temporal Interaction Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :1046–1056.
Human action is naturally compositional: humans can easily recognize and perform actions with objects that are different from those used in training demonstrations. In this paper, we study the compositionality of action by looking into the dynamics of subject-object interactions. We propose a novel model which can explicitly reason about the geometric relations between constituent objects and an agent performing an action. To train our model, we collect dense object box annotations on the Something-Something dataset. We propose a novel compositional action recognition task where the training combinations of verbs and nouns do not overlap with the test set. The novel aspects of our model are applicable to activities with prominent object interaction dynamics and to objects which can be tracked using state-of-the-art approaches; for activities without clearly defined spatial object-agent interactions, we rely on baseline scene-level spatio-temporal representations. We show the effectiveness of our approach not only on the proposed compositional action recognition task but also in a few-shot compositional setting which requires the model to generalize across both object appearance and action category.
Zheng, Wenbo, Yan, Lan, Gou, Chao, Wang, Fei-Yue.  2020.  Webly Supervised Knowledge Embedding Model for Visual Reasoning. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :12442–12451.
Visual reasoning between visual image and natural language description is a long-standing challenge in computer vision. While recent approaches offer a great promise by compositionality or relational computing, most of them are oppressed by the challenge of training with datasets containing only a limited number of images with ground-truth texts. Besides, it is extremely time-consuming and difficult to build a larger dataset by annotating millions of images with text descriptions that may very likely lead to a biased model. Inspired by the majority success of webly supervised learning, we utilize readily-available web images with its noisy annotations for learning a robust representation. Our key idea is to presume on web images and corresponding tags along with fully annotated datasets in learning with knowledge embedding. We present a two-stage approach for the task that can augment knowledge through an effective embedding model with weakly supervised web data. This approach learns not only knowledge-based embeddings derived from key-value memory networks to make joint and full use of textual and visual information but also exploits the knowledge to improve the performance with knowledge-based representation learning for applying other general reasoning tasks. Experimental results on two benchmarks show that the proposed approach significantly improves performance compared with the state-of-the-art methods and guarantees the robustness of our model against visual reasoning tasks and other reasoning tasks.
2021-01-11
Lobo-Vesga, E., Russo, A., Gaboardi, M..  2020.  A Programming Framework for Differential Privacy with Accuracy Concentration Bounds. 2020 IEEE Symposium on Security and Privacy (SP). :411–428.
Differential privacy offers a formal framework for reasoning about privacy and accuracy of computations on private data. It also offers a rich set of building blocks for constructing private data analyses. When carefully calibrated, these analyses simultaneously guarantee the privacy of the individuals contributing their data, and the accuracy of the data analyses results, inferring useful properties about the population. The compositional nature of differential privacy has motivated the design and implementation of several programming languages aimed at helping a data analyst in programming differentially private analyses. However, most of the programming languages for differential privacy proposed so far provide support for reasoning about privacy but not for reasoning about the accuracy of data analyses. To overcome this limitation, in this work we present DPella, a programming framework providing data analysts with support for reasoning about privacy, accuracy and their trade-offs. The distinguishing feature of DPella is a novel component which statically tracks the accuracy of different data analyses. In order to make tighter accuracy estimations, this component leverages taint analysis for automatically inferring statistical independence of the different noise quantities added for guaranteeing privacy. We evaluate our approach by implementing several classical queries from the literature and showing how data analysts can figure out the best manner to calibrate privacy to meet the accuracy requirements.
2021-04-09
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.
2020-12-28
Abazar, T., Masjedi, P., Taheri, M..  2020.  A Binary Relevance Adaptive Model-Selection for Ensemble Steganalysis. 2020 17th International ISC Conference on Information Security and Cryptology (ISCISC). :77—81.

Steganalysis is an interesting classification problem in order to discriminate the images, including hidden messages from the clean ones. There are many methods, including deep CNN networks to extract fine features for this classification task. Nevertheless, a few researches have been conducted to improve the final classifier. Some state-of-the-art methods try to ensemble the networks by a voting strategy to achieve more stable performance. In this paper, a selection phase is proposed to filter improper networks before any voting. This filtering is done by a binary relevance multi-label classification approach. The Logistic Regression (LR) is chosen here as the last layer of network for classification. The large-margin Fisher’s linear discriminant (FLD) classifier is assigned to each one of the networks. It learns to discriminate the training instances which associated network is suitable for or not. Xu-Net, one of the most famous state-of-the-art Steganalysis models, is chosen as the base networks. The proposed method with different approaches is applied on the BOSSbase dataset and is compared with traditional voting and also some state-of-the-art related ensemble techniques. The results show significant accuracy improvement of the proposed method in comparison with others.

2020-03-16
Ren, Wenyu, Yu, Tuo, Yardley, Timothy, Nahrstedt, Klara.  2019.  CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
The Supervisory Control and Data Acquisition (SCADA) system is the most commonly used industrial control system but is subject to a wide range of serious threats. Intrusion detection systems are deployed to promote the security of SCADA systems, but they continuously generate tremendous number of alerts without further comprehending them. There is a need for an efficient system to correlate alerts and discover attack strategies to provide explainable situational awareness to SCADA operators. In this paper, we present a causal-polytree-based anomaly reasoning framework for SCADA networks, named CAPTAR. CAPTAR takes the meta-alerts from our previous anomaly detection framework EDMAND, correlates the them using a naive Bayes classifier, and matches them to predefined causal polytrees. Utilizing Bayesian inference on the causal polytrees, CAPTAR can produces a high-level view of the security state of the protected SCADA network. Experiments on a prototype of CAPTAR proves its anomaly reasoning ability and its capabilities of satisfying the real-time reasoning requirement.
2020-11-02
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
2020-05-18
Bakhtin, Vadim V., Isaeva, Ekaterina V..  2019.  New TSBuilder: Shifting towards Cognition. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :179–181.
The paper reviews a project on the automation of term system construction. TSBuilder (Term System Builder) was developed in 2014 as a multilayer Rosenblatt's perceptron for supervised machine learning, namely 1-3 word terms identification in natural language texts and their rigid categorization. The program is being modified to reduce the rigidity of categorization which will bring text mining more in line with human thinking.We are expanding the range of parameters (semantical, morphological, and syntactical) for categorization, removing the restriction of the term length of three words, using convolution on a continuous sequence of terms, and present the probabilities of a term falling into different categories. The neural network will not assign a single category to a term but give N answers (where N is the number of predefined classes), each of which O ∈ [0, 1] is the probability of the term to belong to a given class.
2020-09-14
Du, Jia, Wang, Zhe, Yang, Junqiang, Song, Xiaofeng.  2019.  Research on Cognitive Linkage of Network Security Equipment. 2019 International Conference on Robots Intelligent System (ICRIS). :296–298.
To solve the problems of weak linkage ability and low intellectualization of strategy allocation in existing network security devices, a new method of cognitive linkage of network security equipment is proposed by learning from human brain. Firstly, the basic connotation and cognitive cycle of cognitive linkage are expounded. Secondly, the main functions of cognitive linkage are clarified. Finally, the cognitive linkage system model is constructed, and the information process flow of cognitive linkage is described. Cognitive linkage of network security equipment provides a new way to effectively enhance the overall protection capability of network security equipment.
2020-10-05
Ong, Desmond, Soh, Harold, Zaki, Jamil, Goodman, Noah.  2019.  Applying Probabilistic Programming to Affective Computing. IEEE Transactions on Affective Computing. :1—1.

Affective Computing is a rapidly growing field spurred by advancements in artificial intelligence, but often, held back by the inability to translate psychological theories of emotion into tractable computational models. To address this, we propose a probabilistic programming approach to affective computing, which models psychological-grounded theories as generative models of emotion, and implements them as stochastic, executable computer programs. We first review probabilistic approaches that integrate reasoning about emotions with reasoning about other latent mental states (e.g., beliefs, desires) in context. Recently-developed probabilistic programming languages offer several key desidarata over previous approaches, such as: (i) flexibility in representing emotions and emotional processes; (ii) modularity and compositionality; (iii) integration with deep learning libraries that facilitate efficient inference and learning from large, naturalistic data; and (iv) ease of adoption. Furthermore, using a probabilistic programming framework allows a standardized platform for theory-building and experimentation: Competing theories (e.g., of appraisal or other emotional processes) can be easily compared via modular substitution of code followed by model comparison. To jumpstart adoption, we illustrate our points with executable code that researchers can easily modify for their own models. We end with a discussion of applications and future directions of the probabilistic programming approach

2020-04-03
Künnemann, Robert, Esiyok, Ilkan, Backes, Michael.  2019.  Automated Verification of Accountability in Security Protocols. 2019 IEEE 32nd Computer Security Foundations Symposium (CSF). :397—39716.

Accountability is a recent paradigm in security protocol design which aims to eliminate traditional trust assumptions on parties and hold them accountable for their misbehavior. It is meant to establish trust in the first place and to recognize and react if this trust is violated. In this work, we discuss a protocol-agnostic definition of accountability: a protocol provides accountability (w.r.t. some security property) if it can identify all misbehaving parties, where misbehavior is defined as a deviation from the protocol that causes a security violation. We provide a mechanized method for the verification of accountability and demonstrate its use for verification and attack finding on various examples from the accountability and causality literature, including Certificate Transparency and Krollˆ\textbackslashtextbackslashprimes Accountable Algorithms protocol. We reach a high degree of automation by expressing accountability in terms of a set of trace properties and show their soundness and completeness.

2020-04-10
Baral, Gitanjali, Arachchilage, Nalin Asanka Gamagedara.  2019.  Building Confidence not to be Phished Through a Gamified Approach: Conceptualising User's Self-Efficacy in Phishing Threat Avoidance Behaviour. 2019 Cybersecurity and Cyberforensics Conference (CCC). :102—110.

Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.

2020-09-28
Abie, Habtamu.  2019.  Cognitive Cybersecurity for CPS-IoT Enabled Healthcare Ecosystems. 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT). :1–6.

Cyber Physical Systems (CPS)-Internet of Things (IoT) enabled healthcare services and infrastructures improve human life, but are vulnerable to a variety of emerging cyber-attacks. Cybersecurity specialists are finding it hard to keep pace of the increasingly sophisticated attack methods. There is a critical need for innovative cognitive cybersecurity for CPS-IoT enabled healthcare ecosystem. This paper presents a cognitive cybersecurity framework for simulating the human cognitive behaviour to anticipate and respond to new and emerging cybersecurity and privacy threats to CPS-IoT and critical infrastructure systems. It includes the conceptualisation and description of a layered architecture which combines Artificial Intelligence, cognitive methods and innovative security mechanisms.

2020-06-04
Briggs, Shannon, Perrone, Michael, Peveler, Matthew, Drozdal, Jaimie, Balagyozyan, Lilit, Su, Hui.  2019.  Multimodal, Multiuser Immersive Brainstorming and Scenario Planning for Intelligence Analysis. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—4.

This paper discusses two pieces of software designed for intelligence analysis, the brainstorming tool and the Scenario Planning Advisor. These tools were developed in the Cognitive Immersive Systems Lab (CISL) in conjunction with IBM. We discuss the immersive environment the tools are situated in, and the proposed benefit for intelligence analysis.

2019-12-16
Mikkilineni, Rao, Morana, Giovanni.  2019.  Post-Turing Computing, Hierarchical Named Networks and a New Class of Edge Computing. 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). :82-87.

Advances in our understanding of the nature of cognition in its myriad forms (Embodied, Embedded, Extended, and Enactive) displayed in all living beings (cellular organisms, animals, plants, and humans) and new theories of information, info-computation and knowledge are throwing light on how we should build software systems in the digital universe which mimic and interact with intelligent, sentient and resilient beings in the physical universe. Recent attempts to infuse cognition into computing systems to push the boundaries of Church-Turing thesis have led to new computing models that mimic biological systems in encoding knowledge structures using both algorithms executed in stored program control machines and neural networks. This paper presents a new model and implements an application as hierarchical named network composed of microservices to create a managed process workflow by enabling dynamic configuration and reconfiguration of the microservice network. We demonstrate the resiliency, efficiency and scaling of the named microservice network using a novel edge cloud platform by Platina Systems. The platform eliminates the need for Virtual Machine overlay and provides high performance and low-latency with L3 based 100 GbE network and SSD support with RDMA and NVMeoE. The hierarchical named microservice network using Kubernetes provisioning stack provides all the cloud features such as elasticity, autoscaling, self-repair and live-migration without reboot. The model is derived from a recent theoretical framework for unification of different models of computation using "Structural Machines.'' They are shown to simulate Turing machines, inductive Turing machines and also are proved to be more efficient than Turing machines. The structural machine framework with a hierarchy of controllers managing the named service connections provides dynamic reconfiguration of the service network from browsers to database to address rapid fluctuations in the demand for or the availability of resources without having to reconfigure IP address base networks.

2020-04-13
Horne, Benjamin D., Gruppi, Mauricio, Adali, Sibel.  2019.  Trustworthy Misinformation Mitigation with Soft Information Nudging. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :245–254.

Research in combating misinformation reports many negative results: facts may not change minds, especially if they come from sources that are not trusted. Individuals can disregard and justify lies told by trusted sources. This problem is made even worse by social recommendation algorithms which help amplify conspiracy theories and information confirming one's own biases due to companies' efforts to optimize for clicks and watch time over individuals' own values and public good. As a result, more nuanced voices and facts are drowned out by a continuous erosion of trust in better information sources. Most misinformation mitigation techniques assume that discrediting, filtering, or demoting low veracity information will help news consumers make better information decisions. However, these negative results indicate that some news consumers, particularly extreme or conspiracy news consumers will not be helped. We argue that, given this background, technology solutions to combating misinformation should not simply seek facts or discredit bad news sources, but instead use more subtle nudges towards better information consumption. Repeated exposure to such nudges can help promote trust in better information sources and also improve societal outcomes in the long run. In this article, we will talk about technological solutions that can help us in developing such an approach, and introduce one such model called Trust Nudging.

2020-07-16
Balduccini, Marcello, Griffor, Edward, Huth, Michael, Vishik, Claire, Wollman, David, Kamongi, Patrick.  2019.  Decision Support for Smart Grid: Using Reasoning to Contextualize Complex Decision Making. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.

2020-08-24
Gao, Hongbiao, Li, Jianbin, Cheng, Jingde.  2019.  Industrial Control Network Security Analysis and Decision-Making by Reasoning Method Based on Strong Relevant Logic. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :289–294.
To improve production efficiency, more industrial control systems are connected to IT networks, and more IT technologies are applied to industrial control networks, network security has become an important problem. Industrial control network security analysis and decision-making is a effective method to solve the problem, which can predict risks and support to make decisions before the actual fault of the industrial control network system has not occurred. This paper proposes a security analysis and decision-making method with forward reasoning based on strong relevant logic for industrial control networks. The paper presents a case study in security analysis and decision-making for industrial control networks. The result of the case study shows that the proposed method is effective.
2020-07-06
Paliath, Vivin, Shakarian, Paulo.  2019.  Reasoning about Sequential Cyberattacks. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :855–862.
Cyber adversaries employ a variety of malware and exploits to attack computer systems, usually via sequential or “chained” attacks, that take advantage of vulnerability dependencies. In this paper, we introduce a formalism to model such attacks. We show that the determination of the set of capabilities gained by an attacker, which also translates to extent to which the system is compromised, corresponds with the convergence of a simple fixed-point operator. We then address the problem of determining the optimal/most-dangerous strategy for a cyber-adversary with respect to this model and find it to be an NP-Complete problem. To address this complexity we utilize an A*-based approach with an admissible heuristic, that incorporates the result of the fixed-point operator and uses memoization for greater efficiency. We provide an implementation and show through a suite of experiments, using both simulated and actual vulnerability data, that this method performs well in practice for identifying adversarial courses of action in this domain. On average, we found that our techniques decrease runtime by 82%.