Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-09-30
Mahmoud, Loreen, Praveen, Raja.  2020.  Network Security Evaluation Using Deep Neural Network. 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). :1–4.
One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.
2020-04-13
Khurana, Madhu, Malik, Priyanka, Puneet, Shweta.  2020.  Network Security Monitoring (NSM): Can it be Effective in a World with Encrypted Traffic? 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :140–144.
HTTPS is gaining widespread popularity for secure transactions. Most popular sites have made default choice as HTTPS. This development of encrypted traffic has brought in new challenges in the areas of network security monitoring and analysis. This paper makes a survey through various study done in the area on novel approaches for identification and investigating HTTPS traffic and its effect on network security monitoring. This work makes a complete analysis and evaluation of HTTPS protocol-is it ensuring security or are we entering in a vicious cycle of finding weaknesses and tryingto fill the gaps in Network security Monitoring. There are couple of vacuums that exist along with encrypted data, namely firewalls, IDS becoming blind to data being exchanged, enhancing vulnerabilities by making it tough to implement security policy and probability of malicious activities hidingin the ciphered traffic. Most of the current techniques namely DPI to port based to IP address to DNS to SNI filtering is prone to be ineffective in front of HTTPS traffic. The emphasis is upon the new ways to explore the expanding HTTPS volume with security breaches to cover new challenges related to Network Security Monitoring. Data collected from couple of up to date research and their conclusion hasbeen discussed to provide a brief overview so as to provide the reader with an in-depth understanding of the research progress in thisarea.
2021-09-30
Desnitsky, Vasily A., Kotenko, Igor V., Parashchuk, Igor B..  2020.  Neural Network Based Classification of Attacks on Wireless Sensor Networks. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :284–287.
The paper proposes a method for solving problems of classifying multi-step attacks on wireless sensor networks in the conditions of uncertainty (incompleteness and inconsistency) of the observed signs of attacks. The method aims to eliminate the uncertainty of classification of attacks on networks of this class one the base of the use of neural network approaches to the processing of incomplete and contradictory knowledge on possible attack characteristics. It allows increasing objectivity (accuracy and reliability) of information security monitoring in modern software and hardware systems and Internet of Things networks that actively exploit advantages of wireless sensor networks.
2021-03-15
Besser, K., Lonnstrom, A., Jorswieck, E. A..  2020.  Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8738–8742.
The design of reliable and secure codes with finite block length is an important requirement for industrial machine type communications. In this work, we develop an autoencoder for the multi-mode fiber wiretap channel taking into account the error performance at the legitimate receiver and the information leakage at potential eavesdroppers. The estimate of the mutual information leakage includes AWGN and fading channels. The code design is tailored to the specific channel setup where the eavesdropper experiences a mode dependent loss. Numerical simulations illustrate the performance and show a Pareto improvement of the proposed scheme compared to the state-of-the-art polar wiretap codes.
2021-02-01
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
2021-05-03
Paulsen, Brandon, Wang, Jingbo, Wang, Jiawei, Wang, Chao.  2020.  NEURODIFF: Scalable Differential Verification of Neural Networks using Fine-Grained Approximation. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :784–796.
As neural networks make their way into safety-critical systems, where misbehavior can lead to catastrophes, there is a growing interest in certifying the equivalence of two structurally similar neural networks - a problem known as differential verification. For example, compression techniques are often used in practice for deploying trained neural networks on computationally- and energy-constrained devices, which raises the question of how faithfully the compressed network mimics the original network. Unfortunately, existing methods either focus on verifying a single network or rely on loose approximations to prove the equivalence of two networks. Due to overly conservative approximation, differential verification lacks scalability in terms of both accuracy and computational cost. To overcome these problems, we propose NEURODIFF, a symbolic and fine-grained approximation technique that drastically increases the accuracy of differential verification on feed-forward ReLU networks while achieving many orders-of-magnitude speedup. NEURODIFF has two key contributions. The first one is new convex approximations that more accurately bound the difference of two networks under all possible inputs. The second one is judicious use of symbolic variables to represent neurons whose difference bounds have accumulated significant error. We find that these two techniques are complementary, i.e., when combined, the benefit is greater than the sum of their individual benefits. We have evaluated NEURODIFF on a variety of differential verification tasks. Our results show that NEURODIFF is up to 1000X faster and 5X more accurate than the state-of-the-art tool.
2021-07-27
Xiao, Wenli, Jiang, Hao, Xia, Song.  2020.  A New Black Box Attack Generating Adversarial Examples Based on Reinforcement Learning. 2020 Information Communication Technologies Conference (ICTC). :141–146.
Machine learning can be misled by adversarial examples, which is formed by making small changes to the original data. Nowadays, there are kinds of methods to produce adversarial examples. However, they can not apply non-differentiable models, reduce the amount of calculations, and shorten the sample generation time at the same time. In this paper, we propose a new black box attack generating adversarial examples based on reinforcement learning. By using deep Q-learning network, we can train the substitute model and generate adversarial examples at the same time. Experimental results show that this method only needs 7.7ms to produce an adversarial example, which solves the problems of low efficiency, large amount of calculation and inapplicable to non-differentiable model.
2021-01-25
Abusukhon, A., AlZu’bi, S..  2020.  New Direction of Cryptography: A Review on Text-to-Image Encryption Algorithms Based on RGB Color Value. 2020 Seventh International Conference on Software Defined Systems (SDS). :235–239.
Data encryption techniques are important for answering the question: How secure is the Internet for sending sensitive data. Keeping data secure while they are sent through the global network is a difficult task. This is because many hackers are fishing these data in order to get some benefits. The researchers have developed various types of encryption algorithms to protect data from attackers. These algorithms are mainly classified into two categories namely symmetric and asymmetric encryption algorithms. This survey sheds light on the recent work carried out on encrypting a text into an image based on the RGB color value and held a comparison between them based on various factors evolved from the literature.
2021-02-15
Chen, Z., Chen, J., Meng, W..  2020.  A New Dynamic Conditional Proxy Broadcast Re-Encryption Scheme for Cloud Storage and Sharing. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :569–576.
Security of cloud storage and sharing is concerned for years since a semi-trusted party, Cloud Server Provider (CSP), has access to user data on cloud server that may leak users' private data without constraint. Intuitively, an efficient solution of protecting cloud data is to encrypt it before uploading to the cloud server. However, a new requirement, data sharing, makes it difficult to manage secret keys among data owners and target users. Therefore conditional proxy broadcast re-encryption technology (CPBRE) is proposed in recent years to provide data encryption and sharing approaches for cloud environment. It enables a data owner to upload encrypted data to the cloud server and a third party proxy can re-encrypted cloud data under certain condition to a new ciphertext so that target users can decrypt re-encrypted data using their own private key. But few CPBRE schemes are applicable for a dynamic cloud environment. In this paper, we propose a new dynamic conditional proxy broadcast reencryption scheme that can be dynamic in system user setting and target user group. The initialization phase does not require a fixed system user setup so that users can join or leave the system in any time. And data owner can dynamically change the group of user he wants to share data with. We also provide security analysis which proves our scheme to be secure against CSP, and performance analysis shows that our scheme exceeds other schemes in terms of functionality and resource cost.
2021-01-18
Huang, Y., Wang, S., Wang, Y., Li, H..  2020.  A New Four-Dimensional Chaotic System and Its Application in Speech Encryption. 2020 Information Communication Technologies Conference (ICTC). :171–175.
Traditional encryption algorithms are not suitable for modern mass speech situations, while some low-dimensional chaotic encryption algorithms are simple and easy to implement, but their key space often small, leading to poor security, so there is still a lot of room for improvement. Aiming at these problems, this paper proposes a new type of four-dimensional chaotic system and applies it to speech encryption. Simulation results show that the encryption scheme in this paper has higher key space and security, which can achieve the speech encryption goal.
2021-02-23
Kamal, A., Dahshan, H., Elbayoumy, A. D..  2020.  A New Homomorphic Message Authentication Code Scheme for Network Coding. 2020 3rd International Conference on Information and Computer Technologies (ICICT). :520—524.
Network coding (NC) can significantly increase network performance and make lossy networks more reliable. Since the middle nodes modify the packets during their path to destination, integrity of the original packets cannot be checked using classical methods (MACs, Signatures, etc). Though, pollution attacks are the most common threat to network coded systems, where an infected node can inject the data flow of a network with a number of false packets and ban the receiver from properly decoding the packets. A lot of work in the security of NC in resisting pollution attacks has been investigated in recent years, majority have the same security parameter 1/q. A Homomorphic MAC scheme is presented earlier to resist pollution attacks with a security level 1/qˆl, In this paper, we will show that the mentioned scheme is subject to known-plaintext attacks. This is due to that part of the key can be revealed in an initial process. Also, the whole key could be revealed if the key is used more than once. Then, a modification to the mentioned scheme is proposed to overcome this issue. Besides, the MAC length is adjustable according to the required security level and not variable according to the vector's length which will accordingly increase the performance and efficiency of the scheme.
2021-09-30
Lina, Zhu, Dongzhao, Zhu.  2020.  A New Network Security Architecture Based on SDN / NFV Technology. 2020 International Conference on Computer Engineering and Application (ICCEA). :669–675.
The new network based on software-defined network SDN and network function virtualization NFV will replace the traditional network, so it is urgent to study the network security architecture based on the new network environment. This paper presents a software - defined security SDS architecture. It is open and universal. It provides an open interface for security services, security devices, and security management. It enables different network security vendors to deploy security products and security solutions. It can realize the deployment, arrangement and customization of virtual security function VSFs. It implements fine-grained data flow control and security policy management. The author analyzes the different types of attacks that different parts of the system are vulnerable to. The defender can disable the network attacks by changing the server-side security configuration scheme. The future research direction of network security is put forward.
2021-11-30
Hou, Shiming, Li, Hongjia, Yang, Chang, Wang, Liming.  2020.  A New Privacy-Preserving Framework Based on Edge-Fog-Cloud Continuum for Load Forecasting. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–8.
As an essential part to intelligently fine-grained scheduling, planning and maintenance in smart grid and energy internet, short-term load forecasting makes great progress recently owing to the big data collected from smart meters and the leap forward in machine learning technologies. However, the centralized computing topology of classical electric information system, where individual electricity consumption data are frequently transmitted to the cloud center for load forecasting, tends to violate electric consumers' privacy as well as to increase the pressure on network bandwidth. To tackle the tricky issues, we propose a privacy-preserving framework based on the edge-fog-cloud continuum for smart grid. Specifically, 1) we gravitate the training of load forecasting models and forecasting workloads to distributed smart meters so that consumers' raw data are handled locally, and only the forecasting outputs that have been protected are reported to the cloud center via fog nodes; 2) we protect the local forecasting models that imply electricity features from model extraction attacks by model randomization; 3) we exploit a shuffle scheme among smart meters to protect the data ownership privacy, and utilize a re-encryption scheme to guarantee the forecasting data privacy. Finally, through comprehensive simulation and analysis, we validate our proposed privacy-preserving framework in terms of privacy protection, and computation and communication efficiency.
2021-01-11
Bahaa, M., Aboulmagd, A., Adel, K., Fawzy, H., Abdelbaki, N..  2020.  nnDPI: A Novel Deep Packet Inspection Technique Using Word Embedding, Convolutional and Recurrent Neural Networks. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :165–170.
Traffic Characterization, Application Identification, Per Application Classification, and VPN/Non-VPN Traffic Characterization have been some of the most notable research topics over the past few years. Deep Packet Inspection (DPI) promises an increase in Quality of Service (QoS) for Internet Service Providers (ISPs), simplifies network management and plays a vital role in content censoring. DPI has been used to help ease the flow of network traffic. For instance, if there is a high priority message, DPI could be used to enable high-priority information to pass through immediately, ahead of other lower priority messages. It can be used to prioritize packets that are mission-critical, ahead of ordinary browsing packets. Throttling or slowing down the rate of data transfer can be achieved using DPI for certain traffic types like peer-to-peer downloads. It can also be used to enhance the capabilities of ISPs to prevent the exploitation of Internet of Things (IoT) devices in Distributed Denial-Of-Service (DDOS) attacks by blocking malicious requests from devices. In this paper, we introduce a novel architecture for DPI using neural networks utilizing layers of word embedding, convolutional neural networks and bidirectional recurrent neural networks which proved to have promising results in this task. The proposed architecture introduces a new mix of layers which outperforms the proposed approaches before.
2021-02-01
Mahmood, Z. H., Ibrahem, M. K..  2020.  A Noise-Free Homomorphic Encryption based on Chaotic System. 2020 1st. Information Technology To Enhance e-learning and Other Application (IT-ELA. :132–137.
Fully homomorphic encryption (FHE) was one of the most prominent research topics of the last ten years. And it is considered as a major cryptographic tool in a secure and reliable cloud computing environment. The reason behind that because it allows computations over encrypted data, without decrypting the original message. This paper developed a new symmetric (FHE) algorithm based on Enhanced Matrix Operation for Randomization and Encryption (EMORE) algorithm using a chaotic system. The proposed algorithm was considered a noise-free algorithm. It generates the ciphertext in a floating-point number's format, overcomes the problem of plaintext ring and modular arithmetic operation in EMORE by the hardness of a chaotic system, and provides another level of security in terms of randomness properties, sensitivity to the initial condition, and large key size (\textbackslashtextgreater2100) of a chaotic system. Besides that, the proposed algorithm provides the confidentiality and privacy of outsourced data computing through homomorphism property of it. By using both numerical and statistical tests, these tests proved that the proposed algorithm has positive randomness properties and provide secure and reliable encryption (through encryption-decryption time, key sensitivity, keyspace, and correlation). Finally, the simulation results show that the execution time of the proposed algorithm is faster about 7.85 times than the EMORE algorithm.
2022-11-08
Shomron, Gil, Weiser, Uri.  2020.  Non-Blocking Simultaneous Multithreading: Embracing the Resiliency of Deep Neural Networks. 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). :256–269.
Deep neural networks (DNNs) are known for their inability to utilize underlying hardware resources due to hard-ware susceptibility to sparse activations and weights. Even in finer granularities, many of the non-zero values hold a portion of zero-valued bits that may cause inefficiencies when executed on hard-ware. Inspired by conventional CPU simultaneous multithreading (SMT) that increases computer resource utilization by sharing them across several threads, we propose non-blocking SMT (NB-SMT) designated for DNN accelerators. Like conventional SMT, NB-SMT shares hardware resources among several execution flows. Yet, unlike SMT, NB-SMT is non-blocking, as it handles structural hazards by exploiting the algorithmic resiliency of DNNs. Instead of opportunistically dispatching instructions while they wait in a reservation station for available hardware, NB-SMT temporarily reduces the computation precision to accommodate all threads at once, enabling a non-blocking operation. We demonstrate NB-SMT applicability using SySMT, an NB-SMT-enabled output-stationary systolic array (OS-SA). Compared with a conventional OS-SA, a 2-threaded SySMT consumes 1.4× the area and delivers 2× speedup with 33% energy savings and less than 1% accuracy degradation of state-of-the-art CNNs with ImageNet. A 4-threaded SySMT consumes 2.5× the area and delivers, for example, 3.4× speedup and 39%×energy savings with 1% accuracy degradation of 40%-pruned ResNet-18.
2021-04-27
Balestrieri, E., Vito, L. De, Picariello, F., Rapuano, S., Tudosa, I..  2020.  A Novel CS-based Measurement Method for Impairments Identification in Wireline Channels. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1–6.
The paper proposes a new measurement method for impairments identification in wireline channels (i.e. wire cables) by exploiting a Compressive Sampling (CS)-based technique. The method consists of two-phases: (i) acquisition and reconstruction of the channel impulse response in the nominal working condition and (ii) analysis of the channel state to detect any physical anomaly/discontinuity like deterioration (e.g. aging due to harsh environment) or unauthorized side channel attacks (e.g. taps). The first results demonstrate that the proposed method is capable of estimating the channel impairments with an accuracy that could allow the classification of the main channel impairments. The proposed method could be used to develop low-cost instrumentation for continuous monitoring of the physical layer of data networks and to improve their hardware security.
2021-09-30
Ellinidou, Soultana, Sharma, Gaurav, Markowitch, Olivier, Gogniat, Guy, Dricot, Jean-Michel.  2020.  A novel Network-on-Chip security algorithm for tolerating Byzantine faults. 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1–6.
Since the number of processors and cores on a single chip is increasing, the interconnection among them becomes significant. Network-on-Chip (NoC) has direct access to all resources and information within a System-on-Chip (SoC), rendering it appealing to attackers. Malicious attacks targeting NoC are a major cause of performance depletion and they can cause arbitrary behavior of links or routers, that is, Byzantine faults. Byzantine faults have been thoroughly investigated in the context of Distributed systems however not in Very Large Scale Integration (VLSI) systems. Hence, in this paper we propose a novel fault model followed by the design and implementation of lightweight algorithms, based on Software Defined Network-on-Chip (SDNoC) architecture. The proposed algorithms can be used to build highly available NoCs and can tolerate Byzantine faults. Additionally, a set of different scenarios has been simulated and the results demonstrate that by using the proposed algorithms the packet loss decreases between 65% and 76% under Transpose traffic, 67% and 77% under BitReverse and 55% and 66% under Uniform traffic.
Pamukov, Marin, Poulkov, Vladimir, Shterev, Vasil.  2020.  NSNN Algorithm Performance with Different Neural Network Architectures. 2020 43rd International Conference on Telecommunications and Signal Processing (TSP). :280–284.
Internet of Things (IoT) development and the addition of billions of computationally limited devices prohibit the use of classical security measures such as Intrusion Detection Systems (IDS). In this paper, we study the influence of the implementation of different feed-forward type of Neural Networks (NNs) on the detection Rate of the Negative Selection Neural Network (NSNN) algorithm. Feed-forward and cascade forward NN structures with different number of neurons and different number of hidden layers are tested. For training and testing the NSNN algorithm the labeled KDD NSL dataset is applied. The detection rates provided by the algorithm with several NN structures to determine the optimal solution are calculated and compared. The results show how these different feed-forward based NN architectures impact the performance of the NSNN algorithm.
2020-12-21
Han, K., Zhang, W., Liu, C..  2020.  Numerical Study of Acoustic Propagation Characteristics in the Multi-scale Seafloor Random Media. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). :135–138.
There is some uncertainty as to the applicability or accuracy of current theories for wave propagation in sediments. Numerical modelling of acoustic data has long been recognized to be a powerful method of understanding of complicated wave propagation and interaction. In this paper, we used the coupled two-dimensional PSM-BEM program to simulate the process of acoustic wave propagation in the seafloor with distributed multi-scale random media. The effects of fluid flow between the pores and the grains with multi-scale distribution were considered. The results show that the coupled PSM-BEM program can be directly applied to both high and low frequency seafloor acoustics. A given porous frame with the pore space saturated with fluid can greatly increase the magnitude of acoustic anisotropy. acoustic wave velocity dispersion and attenuation are significant over a frequency range which spans at least two orders of magnitude.
2021-01-15
Khalid, H., Woo, S. S..  2020.  OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2794—2803.
An image forgery method called Deepfakes can cause security and privacy issues by changing the identity of a person in a photo through the replacement of his/her face with a computer-generated image or another person's face. Therefore, a new challenge of detecting Deepfakes arises to protect individuals from potential misuses. Many researchers have proposed various binary-classification based detection approaches to detect deepfakes. However, binary-classification based methods generally require a large amount of both real and fake face images for training, and it is challenging to collect sufficient fake images data in advance. Besides, when new deepfakes generation methods are introduced, little deepfakes data will be available, and the detection performance may be mediocre. To overcome these data scarcity limitations, we formulate deepfakes detection as a one-class anomaly detection problem. We propose OC-FakeDect, which uses a one-class Variational Autoencoder (VAE) to train only on real face images and detects non-real images such as deepfakes by treating them as anomalies. Our preliminary result shows that our one class-based approach can be promising when detecting Deepfakes, achieving a 97.5% accuracy on the NeuralTextures data of the well-known FaceForensics++ benchmark dataset without using any fake images for the training process.
2021-09-30
Titouna, Chafiq, Na\"ıt-Abdesselam, Farid, Moungla, Hassine.  2020.  An Online Anomaly Detection Approach For Unmanned Aerial Vehicles. 2020 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
A non-predicted and transient malfunctioning of one or multiple unmanned aerial vehicles (UAVs) is something that may happen over a course of their deployment. Therefore, it is very important to have means to detect these events and take actions for ensuring a high level of reliability, security, and safety of the flight for the predefined mission. In this research, we propose algorithms aiming at the detection and isolation of any faulty UAV so that the performance of the UAVs application is kept at its highest level. To this end, we propose the use of Kullback-Leiler Divergence (KLD) and Artificial Neural Network (ANN) to build algorithms that detect and isolate any faulty UAV. The proposed methods are declined in these two directions: (1) we compute a difference between the internal and external data, use KLD to compute dissimilarities, and detect the UAV that transmits erroneous measurements. (2) Then, we identify the faulty UAV using an ANN model to classify the sensed data using the internal sensed data. The proposed approaches are validated using a real dataset, provided by the Air Lab Failure and Anomaly (ALFA) for UAV fault detection research, and show promising performance.
2021-12-02
Piatkowska, Ewa, Gavriluta, Catalin, Smith, Paul, Andrén, Filip Pröstl.  2020.  Online Reasoning about the Root Causes of Software Rollout Failures in the Smart Grid. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
An essential ingredient of the smart grid is software-based services. Increasingly, software is used to support control strategies and services that are critical to the grid's operation. Therefore, its correct operation is essential. For various reasons, software and its configuration needs to be updated. This update process represents a significant overhead for smart grid operators and failures can result in financial losses and grid instabilities. In this paper, we present a framework for determining the root causes of software rollout failures in the smart grid. It uses distributed sensors that indicate potential issues, such as anomalous grid states and cyber-attacks, and a causal inference engine based on a formalism called evidential networks. The aim of the framework is to support an adaptive approach to software rollouts, ensuring that a campaign completes in a timely and secure manner. The framework is evaluated for a software rollout use-case in a low voltage distribution grid. Experimental results indicate it can successfully discriminate between different root causes of failure, supporting an adaptive rollout strategy.
2021-02-15
Huang, K..  2020.  Online/Offline Revocable Multi-Authority Attribute-Based Encryption for Edge Computing. 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :563–568.
Multi-authority attribute-based encryption (MA-ABE) is a promising technique to achieve fine-grained access control over encrypted data in cross domain applications. However, the dynamic change of users' access privilege brings security problems, and the heavy encryption computational cost is issue for resource-constrained users in IoT. Moreover, the invalid or illegal ciphertext will waste system resources. We propose a large universe MA-CP-ABE scheme with revocation and online/offline encryption. In our scheme, an efficient revocation mechanism is designed to change users' access privilege timely. Most of the encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, the scheme supports ciphertext verification and only valid ciphertext can be stored and transmitted. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource constrained users in edge computing for IoT.
2021-05-05
Osaretin, Charles Aimiuwu, Zamanlou, Mohammad, Iqbal, M. Tariq, Butt, Stephen.  2020.  Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0571—0575.
An open source and low-cost Supervisory Control and Data Acquisition System based on Node-RED and Arduino microcontrollers is presented in this paper. The system is designed for monitoring, supervision, and remotely controlling motors and sensors deployed for oil and gas facilities. The Internet of Things (IoT) based SCADA system consists of a host computer on which a server is deployed using the Node-RED programming tool and two terminal units connected to it: Arduino Uno and Arduino Mega. The Arduino Uno collects and communicates the data acquired from the temperature, flowrate, and water level sensors to the Node-Red on the computer through the serial port. It also uses a local liquid crystal display (LCD) to display the temperature. Node-RED on the computer retrieves the data from the voltage, current, rotary, accelerometer, and distance sensors through the Arduino Mega. Also, a web-based graphical user interface (GUI) is created using Node-RED and hosted on the local server for parsing the collected data. Finally, an HTTP basic access authentication is implemented using Nginx to control the clients' access from the Internet to the local server and to enhance its security and reliability.