Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-07-27
Jiao, Rui, Zhang, Lan, Li, Anran.  2020.  IEye: Personalized Image Privacy Detection. 2020 6th International Conference on Big Data Computing and Communications (BIGCOM). :91–95.
Massive images are being shared via a variety of ways, such as social networking. The rich content of images raise a serious concern for privacy. A great number of efforts have been devoted to designing mechanisms for privacy protection based on the assumption that the privacy is well defined. However, in practice, given a collection of images it is usually nontrivial to decide which parts of images should be protected, since the sensitivity of objects is context-dependent and user-dependent. To meet personalized privacy requirements of different users, we propose a system IEye to automatically detect private parts of images based on both common knowledge and personal knowledge. Specifically, for each user's images, multi-layered semantic graphs are constructed as feature representations of his/her images and a rule set is learned from those graphs, which describes his/her personalized privacy. In addition, an optimization algorithm is proposed to protect the user's privacy as well as minimize the loss of utility. We conduct experiments on two datasets, the results verify the effectiveness of our design to detect and protect personalized image privacy.
2021-01-28
Segoro, M. B., Putro, P. A. Wibowo.  2020.  Implementation of Two Factor Authentication (2FA) and Hybrid Encryption to Reduce the Impact of Account Theft on Android-Based Instant Messaging (IM) Applications. 2020 International Workshop on Big Data and Information Security (IWBIS). :115—120.

Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.

2021-04-27
Pachaghare, S., Patil, P..  2020.  Improving Authentication and Data Sharing Capabilities of Cloud using a Fusion of Kerberos and TTL-based Group Sharing. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :1401—1405.
Cloud security has been of utmost concern for researchers and cloud deployers since the inception of cloud computing. Methods like PKI, hashing, encryption, etc. have proven themselves useful throughout cloud technology development, but they are not considered as a complete security solution for all kinds of cloud authentications. Moreover, data sharing in the cloud has also become a question of research due to the abundant use of data storage available on the cloud. To solve these issues, a Kerberos-based time-to-live (TTL) inspired data sharing and authentication mechanism is proposed on the cloud. The algorithm combines the two algorithms and provides a better cloud deployment infrastructure. It uses state-of-the-art elliptic curve cryptography along with a secure hashing algorithm (SHA 256) for authentication, and group-based time-to-live data sharing to evaluate the file-sharing status for the users. The result evaluates the system under different authentication attacks, and it is observed that the system is efficient under any kind of attack and any kind of file sharing process.
2021-05-25
Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Jacot, Niels, Do, Van Thuan, Do, Thanh Van.  2020.  Improving Cellular IoT Security with Identity Federation and Anomaly Detection. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :776—780.

As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.

2021-05-13
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2021-01-28
Wang, Y., Gao, W., Hei, X., Mungwarama, I., Ren, J..  2020.  Independent credible: Secure communication architecture of Android devices based on TrustZone. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :85—92.

The development of mobile internet has brought convenience to people, but the openness and diversity of mobile Internet make it face the security threat of communication privacy data disclosure. In this paper, a trusted android device security communication method based on TrustZone is proposed. Firstly, Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm is used to make both parties negotiate the session key in the Trusted Execution Environment (TEE), and then, we stored the key safely in the TEE. Finally, TEE completes the encryption and decryption of the transmitted data. This paper constructs a secure communication between mobile devices without a trusted third party and analyzes the feasibility of the method from time efficiency and security. The experimental results show that the method can resist malicious application monitoring in the process of data encryption and ensures the security of the session key. Compared with the traditional scheme, it is found that the performance of the scheme is not significantly reduced.

2022-09-09
Kirillova, Elena A., Shavaev, Azamat A., Wenqi, Xi, Huiting, Guo, Suyu, Wang.  2020.  Information Security of Logistics Services. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :103—106.

Information security of logistics services. Information security of logistics services is understood as a complex activity aimed at using information and means of its processing in order to increase the level of protection and normal functioning of the object's information environment. At the same time the main recommendations for ensuring information security of logistics processes include: logistics support of processes for ensuring the security of information flows of the enterprise; assessment of the quality and reliability of elements, reliability and efficiency of obtaining information about the state of logistics processes. However, it is possible to assess the level of information security within the organization's controlled part of the supply chain through levels and indicators. In this case, there are four levels and elements of information security of supply chains.

2021-11-08
Aitchison, Callum, Buckle, Roman, Ch'ng, Alvin, Clarke, Christian, Malley, Jacob, Halak, Basel.  2020.  On the Integration of Physically Unclonable Functions into ARM TrustZone Security Technology. 2020 European Conference on Circuit Theory and Design (ECCTD). :1–4.
As Internet of Things (IoT) devices are increasingly used in industry and become further integrated into our daily lives the security of such devices is of paramount concern. Ensuring that the large amount of information that these devices collect is protected and only accessible to authenticated users is a critical requirement of the industry. One potentially inexpensive way to improve device security utilises a Physically Unclonable Function (PUF) to generate a unique random response per device. This random response can be generated in such a way that it can be regenerated reliably and repeatably allowing the response to be considered a signature for each device. This signature could then be used for authentication or key generation purposes, improving trust in IoT devices. The advantage of a PUF based system is that the response does not need to be stored in nonvolatile memory as it is regenerated on demand, hardening the system against physical attacks. With SoC FPGAs being inexpensive and widely available there is potential for their use in both industrial and consumer applications as an additional layer of hardware security. In this paper we investigate and implement a Trusted Execution Environment (TEE) based around a PUF solely implemented in the FPGA fabric on a Xilinx Zynq-7000 SoC FPGA. The PUF response is used to seed a generic entropy maximisation function or Pseudorandom Number Generator (PRNG) with a system controller capable of encrypting data to be useful only to the device. This system interacts with a software platform running in the ARM TrustZone on the ARM Cortex core in the SoC, which handles requests between user programs and the FPGA. The proposed PUF-based security module can generate unique random keys able to pass all NIST tests and protects against physical attacks on buses and nonvolatile memories. These improvements are achieved at a cost of fewer than half the resources on the Zynq-7000 SoC FPGA.
2021-06-01
Hashemi, Seyed Mahmood.  2020.  Intelligent Approaches for the Trust Assessment. 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :348–352.
There is a need for suitable approaches to trust assessment to cover the problems of human life. Trust assessment for the information communication related to the quality of service (QoS). The server sends data packets to the client(s) according to the trust assessment. The motivation of this paper is designing a proper approach for the trust assessment process. We propose two methods that are based on the fuzzy systems and genetic algorithm. We compare the results of proposed approaches that can guide to select the proper approaches.
2022-08-12
Li, Ziqing, Feng, Guiling.  2020.  Inter-Language Static Analysis for Android Application Security. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :647–650.

The Android application market will conduct various security analysis on each application to predict its potential harm before put it online. Since almost all the static analysis tools can only detect malicious behaviors in the Java layer, more and more malwares try to avoid static analysis by taking the malicious codes to the Native layer. To provide a solution for the above situation, there's a new research aspect proposed in this paper and defined as Inter-language Static Analysis. As all the involved technologies are introduced, the current research results of them will be captured in this paper, such as static analysis in Java layer, binary analysis in Native layer, Java-Native penetration technology, etc.

2020-12-21
Kasah, N. b H., Aman, A. H. b M., Attarbashi, Z. S. M., Fazea, Y..  2020.  Investigation on 6LoWPAN Data Security for Internet of Things. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–5.
Low-power wireless network technology is one of the main key characteristics in communication systems that are needed by the Internet of Things (IoT). Nowadays, the 6LoWPAN standard is one of the communication protocols which has been identified as an important protocol in IoT applications. Networking technology in 6LoWPAN transfer IPv6 packets efficiently in link-layer framework that is well-defined by IEEE 802.14.5 protocol. 6Lo WPAN development is still having problems such as threats and entrust crises. The most important part when developing this new technology is the challenge to secure the network. Data security is viewed as a major consideration in this network communications. Many researchers are working to secure 6LoWPAN communication by analyzing the architecture and network features. 6LoWPAN security weakness or vulnerability is exposed to various forms of network attack. In this paper, the security solutions for 6LoWPAN have been investigated. The requirements of safety in 6LoWPAN are also presented.
2020-12-14
Hadiansyah, R., Suryani, V., Wardana, A. A..  2020.  IoT Object Security towards the Sybil Attack Using the Trustworthiness Management. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1–4.

Internet of Things (IoT), commonly referred to a physical object connected to network, refers to a paradigm in information technology integrating the advances in terms of sensing, computation and communication to improve the service in daily life. This physical object consists of sensors and actuators that are capable of changing the data to offer the improvement of service quality in daily life. When a data exchange occurs, the exchanged data become sensitive; making them vulnerable to any security attacks, one of which, for example, is Sybil attack. This paper aimed to propose a method of trustworthiness management based upon the authentication and trust value. Once performing the test on three scenarios, the system was found to be capable of detecting the Sybil attack rapidly and accurately. The average of time to detect the Sybil attacks was 9.3287 seconds and the average of time required to detect the intruder object in the system was 18.1029 seconds. The accuracy resulted in each scenario was found 100% indicating that the detection by the system to Sybil attack was 100% accurate.

2021-08-17
Tseng, Chia-Wei, Wu, Li-Fan, Hsu, Shih-Chun, Yu, Sheng-Wang.  2020.  IPv6 DoS Attacks Detection Using Machine Learning Enhanced IDS in SDN/NFV Environment. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS). :263–266.
The rapid growth of IPv6 traffic makes security issues become more important. This paper proposes an IPv6 network security system that integrates signature-based Intrusion Detection Systems (IDS) and machine learning classification technologies to improve the accuracy of IPv6 denial-of-service (DoS) attacks detection. In addition, this paper has also enhanced IPv6 network security defense capabilities through software-defined networking (SDN) and network function virtualization (NFV) technologies. The experimental results prove that the detection and defense mechanisms proposed in this paper can effectively strengthen IPv6 network security.
2021-05-18
Shen, Chao.  2020.  Laser-based high bit-rate visible light communications and underwater optical wireless network. 2020 Photonics North (PN). :1–1.
This talk presents an overview of the latest visible light communication (VLC) and underwater wireless optical communication (UWOC) research and development from the device to the system level. The utilization of laser-based devices and systems for LiFi and underwater Internet of Things (IoT) has been discussed.
2021-09-16
Shen, Jian, Gui, Ziyuan, Chen, Xiaofeng, Zhang, Jun, Xiang, Yang.  2020.  Lightweight and Certificateless Multi-Receiver Secure Data Transmission Protocol for Wireless Body Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
The rapid development of low-power integrated circuits, wireless communication, intelligent sensors and microelectronics has allowed the realization of wireless body area networks (WBANs), which can monitor patients' vital body parameters remotely in real time to offer timely treatment. These vital body parameters are related to patients' life and health; and these highly private data are subject to many security threats. To guarantee privacy, many secure communication protocols have been proposed. However, most of these protocols have a one-to-one structure in extra-body communication and cannot support multidisciplinary team (MDT). Hence, we propose a lightweight and certificateless multi-receiver secure data transmission protocol for WBANs to support MDT treatment in this paper. In particular, a novel multi-receiver certificateless generalized signcryption (MR-CLGSC) scheme is proposed that can adaptively use only one algorithm to implement one of three cryptographic primitives: signature, encryption or signcryption. Then, a multi-receiver secure data transmission protocol based on the MR-CLGSC scheme with many security properties, such as data integrity and confidentiality, non-repudiation, anonymity, forward and backward secrecy, unlinkability and data freshness, is designed. Both security analysis and performance analysis show that the proposed protocol for WBANs is secure, efficient and highly practical.
2021-06-01
Naderi, Pooria Taghizadeh, Taghiyareh, Fattaneh.  2020.  LookLike: Similarity-based Trust Prediction in Weighted Sign Networks. 2020 6th International Conference on Web Research (ICWR). :294–298.
Trust network is widely considered to be one of the most important aspects of social networks. It has many applications in the field of recommender systems and opinion formation. Few researchers have addressed the problem of trust/distrust prediction and, it has not yet been established whether the similarity measures can do trust prediction. The present paper aims to validate that similar users have related trust relationships. To predict trust relations between two users, the LookLike algorithm was introduced. Then we used the LookLike algorithm results as new features for supervised classifiers to predict the trust/distrust label. We chose a list of similarity measures to examined our claim on four real-world trust network datasets. The results demonstrated that there is a strong correlation between users' similarity and their opinion on trust networks. Due to the tight relation between trust prediction and truth discovery, we believe that our similarity-based algorithm could be a promising solution in their challenging domains.
2021-11-08
Ruchkin, V., Soldatov, G., Fulin, V., Kostrov, B., Ruchkina, E..  2020.  Macros for Coding Information Encryption Amp; Decryption in Trusted Platform Module. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
This article describes the process assembling of Encryption & Decryption In Trusted Platform Module of encoding information in NM640X \textregistered. Encoding of information, carried out in assembly language according to Gost 28147-89. It is a realisation of standard GOST 28147-89- Russian state symmetric key block cipher. GOST 28147-89 has 64-bit to access the kernel, trust, and allocated memory in the BlockSize and 256-bit KeySize.
2021-08-31
Murai, Toshiya, Shoji, Yuya, Nishiyama, Nobuhiko, Mizumoto, Tetsuya.  2020.  Magneto-Optical Isolator and Self-Holding Optical Switch Integrated with Thin-Film Magnet. 2020 Conference on Lasers and Electro-Optics (CLEO). :1–2.
Novel magneto-optical isolator and self-holding optical switch with an a-Si:H microring resonator are demonstrated. The devices are driven by the remanence of integrated thin-film magnet and, therefore, maintain their state without any power supply.
2020-12-14
Dong, D., Ye, Z., Su, J., Xie, S., Cao, Y., Kochan, R..  2020.  A Malware Detection Method Based on Improved Fireworks Algorithm and Support Vector Machine. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :846–851.
The increasing of malwares has presented a serious threat to the security of computer systems in recent years. Traditional signature-based anti-virus systems are not able to detect metamorphic and previously unseen malwares and it inspires people to use machine learning methods such as Naive Bayes and Decision Tree to identity malicious executables. Among these methods, detecting malwares by using Support Vector Machine (SVM) is one of the most effective approaches. However, the parameters of SVM have serious impacts on its classification performance. In order to find the optimal parameter combination and avoid the problem of falling into local optimal solution, many methods based on evolutionary algorithms are proposed, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE) and others. But these algorithms still face the problem of being trapped into local solution spaces in different degree. In this paper, an improved fireworks algorithm is presented and applied to search parameters of SVM: penalty factor c and kernel function parameter g. To research the performance of the proposed algorithm, numeric experiments are made and compared with some typical algorithms, the experimental results demonstrate it outperforms other algorithms.
2021-06-28
Alshehri, Mohammed, Panda, Brajendra.  2020.  Minimizing Data Breach by a Malicious Fog Node within a Fog Federation. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :36–43.
Fog computing was emerged as mini-clouds deployed close to the ground to reduce communication overhead and time latency between the cloud and end-users' devices. Because fog computing is an extension of cloud computing, it inherits the security and privacy issues cloud computing has faced. If a Fog Node (FN) serving end-devices goes rogue or becomes maliciously compromised, this would hinder individuals' and organizations' data security (e.g., Confidentiality, Integrity, and Availability). This paper presents a novel scheme based on the Ciphertext-Policy-Attribute-Based-Encryption (CP-ABE) and hashing cryptographic primitives to minimize the amount of data in danger of breach by rogue fog nodes with maintaining the fog computing services provided to end-users' devices. This scheme manages to oust rogue Fog Nodes (FNs) and to prevent them from violating end-users' data security while guarantying the features provided by the fog computing paradigm. We demonstrate our scheme's applicability and efficiency by carrying out performance analysis and analyzing its security, and communication overhead.
2021-02-10
Aktepe, S., Varol, C., Shashidhar, N..  2020.  MiNo: The Chrome Web Browser Add-on Application to Block the Hidden Cryptocurrency Mining Activities. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Cryptocurrencies are the digital currencies designed to replace the regular cash money while taking place in our daily lives especially for the last couple of years. Mining cryptocurrencies are one of the popular ways to have them and make a profit due to unstable values in the market. This attracts attackers to utilize malware on internet users' computer resources, also known as cryptojacking, to mine cryptocurrencies. Cryptojacking started to be a major issue in the internet world. In this case, we developed MiNo, a web browser add-on application to detect these malicious mining activities running without the user's permission or knowledge. This add-on provides security and efficiency for the computer resources of the internet users. MiNo designed and developed with double-layer protection which makes it ahead of its competitors in the market.

2022-09-09
Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

2021-08-02
Qi, Xiaoxia, Shen, Shuai, Wang, Qijin.  2020.  A Moving Target Defense Technology Based on SCIT. 2020 International Conference on Computer Engineering and Application (ICCEA). :454—457.
Moving target defense technology is one of the revolutionary techniques that is “changing the rules of the game” in the field of network technology, according to recent propositions from the US Science and Technology Commission. Building upon a recently-developed approach called Self Cleansing Intrusion Tolerance (SCIT), this paper proposes a moving target defense system that is based on server switching and cleaning. A protected object is maneuvered to improve its safety by exploiting software diversity and thereby introducing randomness and unpredictability into the system. Experimental results show that the improved system increases the difficulty of attack and significantly reduces the likelihood of a system being invaded, thus serving to enhance system security.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-05-25
Anubi, Olugbenga Moses, Konstantinou, Charalambos, Wong, Carlos A., Vedula, Satish.  2020.  Multi-Model Resilient Observer under False Data Injection Attacks. 2020 IEEE Conference on Control Technology and Applications (CCTA). :1–8.

In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.