Biblio
In order to improve the information security ability of the network information platform, the information security evaluation method is proposed based on artificial neural network. Based on the comprehensive analysis of the security events in the construction of the network information platform, the risk assessment model of the network information platform is constructed based on the artificial neural network theory. The weight calculation algorithm of artificial neural network and the minimum artificial neural network pruning algorithm are also given, which can realize the quantitative evaluation of network information security. The fuzzy neural network weighted control method is used to control the information security, and the non-recursive traversal method is adopted to realize the adaptive training of information security assessment process. The adaptive learning of the artificial neural network is carried out according to the conditions, and the ability of information encryption and transmission is improved. The information security assessment is realized. The simulation results show that the method is accurate and ensures the information security.
Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.
With the rapid progress of informatization construction in power business, data resource has become the basic strategic resource of the power industry and innovative element in power production. The security protection of data in power business is particularly important in the informatization construction of power business. In order to implement data security protection, transparent encryption is one of the fifteen key technical standards in the Construction Guideline of the Standard Network Data Security System. However, data storage in the encrypted state is bound to affect the security audit of data to a certain extent. Based on this problem, this paper proposes a scheme to audit the sensitivity of the power business data under the protection of encryption to achieve an efficient sensitivity audit of ciphertext data with the premise of not revealing the decryption key or data information. Through a security demonstration, this paper fully proves that this solution is secure under the known plaintext attacks.
The significant development of Internet of Things (IoT) paradigm for monitoring the real-time applications using the wireless communication technologies leads to various challenges. The secure data transmission and privacy is one of the key challenges of IoT enabled Wireless Sensor Networks (WSNs) communications. Due to heterogeneity of attackers like Man-in-Middle Attack (MIMA), the present single layered security solutions are not sufficient. In this paper, the robust cross-layer trust computation algorithm for MIMA attacker detection proposed for IoT enabled WSNs called IoT enabled Cross-Layer Man-in-Middle Attack Detection System (IC-MADS). In IC-MADS, first robust clustering method proposed to form the clusters and cluster head (CH) preference. After clustering, for every sensor node, its trust value computed using the parameters of three layers such as MAC, Physical, and Network layers to protect the network communications in presence of security threats. The simulation results prove that IC-MADS achieves better protection against MIMA attacks with minimum overhead and energy consumption.
The security of wireless network devices has received widespread attention, but most existing schemes cannot achieve fine-grained device identification. In practice, the security vulnerabilities of a device are heavily depending on its model and firmware version. Motivated by this issue, we propose a universal, extensible and device-independent framework called SCAFFISD, which can provide fine-grained identification of wireless routers. It can generate access rules to extract effective information from the router admin page automatically and perform quick scans for known device vulnerabilities. Meanwhile, SCAFFISD can identify rogue access points (APs) in combination with existing detection methods, with the purpose of performing a comprehensive security assessment of wireless networks. We implement the prototype of SCAFFISD and verify its effectiveness through security scans of actual products.
FPGAs are becoming a common sight in cloud environments and new usage paradigms, such as FPGA-as-a-Service, have emerged. This development poses a challenge to traditional FPGA security models, as these are assuming trust between the user and the hardware owner. Currently, the user cannot keep bitstream nor data protected from the hardware owner in an FPGA-as-a-service setting. This paper proposes a security model where the chip manufacturer takes the role of root-of-trust to remedy these security problems. We suggest that the chip manufacturer creates a Public Key Infrastructure (PKI), used for user bitstream protection and data encryption, on each device. The chip manufacturer, rather than the hardware owner, also controls certain security-related peripherals. This allows the user to take control over a predefined part of the programmable logic and set up a protected enclave area. Hence, all user data can be provided in encrypted form and only be revealed inside the enclave area. In addition, our model enables secure and concurrent multi-tenant usage of remote FPGAs. To also consider the needs of the hardware owner, our solution includes bitstream certification and affirming that uploaded bitstreams have been vetted against maliciousness.
The rapid proliferation of biometrics has led to growing concerns about the security and privacy of the biometric data (template). A biometric uniquely identifies an individual and unlike passwords, it cannot be revoked or replaced since it is unique and fixed for every individual. To address this problem, many biometric template protection methods using fully homomorphic encryption have been proposed. But, most of them (i) are computationally expensive and practically infeasible (ii) do not support operations over real valued biometric feature vectors without quantization (iii) do not support packing of real valued feature vectors into a ciphertext (iv) require multi-shot enrollment of users for improved matching performance. To address these limitations, we propose a secure and privacy preserving method for biometric template protection using fully homomorphic encryption. The proposed method is computationally efficient and practically feasible, supports operations over real valued feature vectors without quantization and supports packing of real valued feature vectors into a single ciphertext. In addition, the proposed method enrolls the users using one-shot enrollment. To evaluate the proposed method, we use three face datasets namely LFW, FEI and Georgia tech face dataset. The encrypted face template (for 128 dimensional feature vector) requires 32.8 KB of memory space and it takes 2.83 milliseconds to match a pair of encrypted templates. The proposed method improves the matching performance by 3 % when compared to state-of-the-art, while providing high template security.
A biometric system is a developing innovation which is utilized in different fields like forensics and security system. Finger recognition is the innovation that confirms the personality of an individual which relies upon the way that everybody has unique fingerprints. Fingerprint biometric systems are smaller in size, simple to utilize and have low power. This proposed study focuses on fingerprint biometric systems and how such a system would be implemented. If implemented, this system would have multifactor authentication strategies and improvised features based on encryption algorithms. The scanner that will be used is Biometric Fingerprint Sensor that is connected to system which determines the authorization and access control rights. All user access information is gathered by the system where the administrators can retrieve and analyse the information. This system has function of being up to date with the data changes like displaying the name of the individual for controlling security of the system.
Improving the security of data transmission in wireless channels is a key and challenging problem in wireless communication. This paper presents a data security transmission scheme based on high efficiency fountain code. If the legitimate receiver can decode all the original files before the eavesdropper, it can guarantee the safe transmission of the data, so we use the efficient coding scheme of the fountain code to ensure the efficient transmission of the data, and add the feedback mechanism to the transmission of the fountain code so that the coding scheme can be updated dynamically according to the decoding situation of the legitimate receiver. Simulation results show that the scheme has high security and transmitter transmission efficiency in the presence of eavesdropping scenarios.
Language-based information-flow control (IFC) techniques often rely on special purpose, ad-hoc primitives to address different covert channels that originate in the runtime system, beyond the scope of language constructs. Since these piecemeal solutions may not compose securely, there is a need for a unified mechanism to control covert channels. As a first step towards this goal, we argue for the design of a general interface that allows programs to safely interact with the runtime system and the available computing resources. To coordinate the communication between programs and the runtime system, we propose the use of asynchronous exceptions (interrupts), which, to the best of our knowledge, have not been considered before in the context of IFC languages. Since asynchronous exceptions can be raised at any point during execution-often due to the occurrence of an external event-threads must temporarily mask them out when manipulating locks and shared data structures to avoid deadlocks and, therefore, breaking program invariants. Crucially, the naive combination of asynchronous exceptions with existing features of IFC languages (e.g., concurrency and synchronization variables) may open up new possibilities of information leakage. In this paper, we present MACasync, a concurrent, statically enforced IFC language that, as a novelty, features asynchronous exceptions. We show how asynchronous exceptions easily enable (out of the box) useful programming patterns like speculative execution and some degree of resource management. We prove that programs in MACasync satisfy progress-sensitive non-interference and mechanize our formal claims in the Agda proof assistant.
Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.
The security problem of networked control systems (NCSs) suffering denial of service(DoS) attacks with incomplete information is investigated in this paper. Data transmission among different components in NCSs may be blocked due to DoS attacks. We use the concept of security level to describe the degree of security of different components in an NCS. Intrusion detection system (IDS) is used to monitor the invalid data generated by DoS attacks. At each time slot, the defender considers which component to monitor while the attacker considers which place for invasion. A one-shot game between attacker and defender is built and both the complete information case and the incomplete information case are considered. Furthermore, a repeated game model with updating beliefs is also established based on the Bayes' rule. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.



