Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-02-22
Song, Z., Kar, P..  2020.  Name-Signature Lookup System: A Security Enhancement to Named Data Networking. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1444–1448.
Named Data Networking (NDN) is a content-centric networking, where the publisher of the packet signs and encapsulates the data packet with a name-content-signature encryption to verify the authenticity and integrity of itself. This scheme can solve many of the security issues inherently compared to IP networking. NDN also support mobility since it hides the point-to-point connection details. However, an extreme attack takes place when an NDN consumer newly connects to a network. A Man-in-the-middle (MITM) malicious node can block the consumer and keep intercepting the interest packets sent out so as to fake the corresponding data packets signed with its own private key. Without knowledge and trust to the network, the NDN consumer can by no means perceive the attack and thus exposed to severe security and privacy hazard. In this paper, the Name-Signature Lookup System (NSLS) and corresponding Name-Signature Lookup Protocol (NSLP) is introduced to verify packets with their registered genuine publisher even in an untrusted network with the help of embedded keys inside Network Interface Controller (NIC), by which attacks like MITM is eliminated. A theoretical analysis of comparing NSLS with existing security model is provided. Digest algorithm SHA-256 and signature algorithm RSA are used in the NSLP model without specific preference.
2020-12-14
Chen, X., Cao, C., Mai, J..  2020.  Network Anomaly Detection Based on Deep Support Vector Data Description. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :251–255.
Intrusion detection system based on representation learning is the main research direction in the field of anomaly detection. Malicious traffic detection system can distinguish normal and malicious traffic by learning representations between normal and malicious traffic. However, under the context of big data, there are many types of malicious traffic, and the features are also changing constantly. It is still a urgent problem to design a detection model that can effectively learn and summarize the feature of normal traffic and accurately identify the features of new kinds of malicious traffic.in this paper, a malicious traffic detection method based on Deep Support Vector Data Description is proposed, which is called Deep - SVDD. We combine convolutional neural network (CNN) with support vector data description, and train the model with normal traffic. The normal traffic features are mapped to high-dimensional space through neural networks, and a compact hypersphere is trained by unsupervised learning, which includes the normal features of the highdimensional space. Malicious traffic fall outside the hypersphere, thus distinguishing between normal and malicious traffic. Experiments show that the model has a high detection rate and a low false alarm rate, and it can effectively identify new malicious traffic.
2021-02-23
Liao, D., Huang, S., Tan, Y., Bai, G..  2020.  Network Intrusion Detection Method Based on GAN Model. 2020 International Conference on Computer Communication and Network Security (CCNS). :153—156.

The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.

2021-05-13
Sheng, Mingren, Liu, Hongri, Yang, Xu, Wang, Wei, Huang, Junheng, Wang, Bailing.  2020.  Network Security Situation Prediction in Software Defined Networking Data Plane. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :475–479.
Software-Defined Networking (SDN) simplifies network management by separating the control plane from the data forwarding plane. However, the plane separation technology introduces many new loopholes in the SDN data plane. In order to facilitate taking proactive measures to reduce the damage degree of network security events, this paper proposes a security situation prediction method based on particle swarm optimization algorithm and long-short-term memory neural network for network security events on the SDN data plane. According to the statistical information of the security incident, the analytic hierarchy process is used to calculate the SDN data plane security situation risk value. Then use the historical data of the security situation risk value to build an artificial neural network prediction model. Finally, a prediction model is used to predict the future security situation risk value. Experiments show that this method has good prediction accuracy and stability.
2020-12-28
Hussain, M. S., Khan, K. U. R..  2020.  Network-based Anomaly Intrusion Detection System in MANETS. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :881—886.

In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.

2021-05-13
Venceslai, Valerio, Marchisio, Alberto, Alouani, Ihsen, Martina, Maurizio, Shafique, Muhammad.  2020.  NeuroAttack: Undermining Spiking Neural Networks Security through Externally Triggered Bit-Flips. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Due to their proven efficiency, machine-learning systems are deployed in a wide range of complex real-life problems. More specifically, Spiking Neural Networks (SNNs) emerged as a promising solution to the accuracy, resource-utilization, and energy-efficiency challenges in machine-learning systems. While these systems are going mainstream, they have inherent security and reliability issues. In this paper, we propose NeuroAttack, a cross-layer attack that threatens the SNNs integrity by exploiting low-level reliability issues through a high-level attack. Particularly, we trigger a fault-injection based sneaky hardware backdoor through a carefully crafted adversarial input noise. Our results on Deep Neural Networks (DNNs) and SNNs show a serious integrity threat to state-of-the art machine-learning techniques.

2021-01-18
Naganuma, K., Suzuki, T., Yoshino, M., Takahashi, K., Kaga, Y., Kunihiro, N..  2020.  New Secret Key Management Technology for Blockchains from Biometrics Fuzzy Signature. 2020 15th Asia Joint Conference on Information Security (AsiaJCIS). :54–58.

Blockchain technology is attracting attention as an innovative system for decentralized payments in fields such as financial area. On the other hand, in a decentralized environment, management of a secret key used for user authentication and digital signature becomes a big issue because if a user loses his/her secret key, he/she will also lose assets on the blockchain. This paper describes the secret key management issues in blockchain systems and proposes a solution using a biometrics-based digital signature scheme. In our proposed system, a secret key to be used for digital signature is generated from the user's biometric information each time and immediately deleted from the memory after using it. Therefore, our blockchain system has the advantage that there is no need for storage for storing secret keys throughout the system. As a result, the user does not have a risk of losing the key management devices and can prevent attacks from malware that steals the secret key.

2021-08-31
Yang, Jiahui, Yuan, Yao, Wang, Shuaibing, Bao, Lianwei, Wang, Ren.  2020.  No-load Switch-in Transient Process Simulation of 500kV Interface Transformer Used in HVDC Flexible. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1–4.
Interface transformer used in asynchronous networking was a kind of special transformer which's different from normal power transformer. During no-load switch-in, the magnitude of inrush current will be high, and the waveform distortion also be severity. Maybe the protections will be activated, even worse may lead the lockdown of the DC system. In this paper, field-circuit coupled finite element method was used for the study of transient characteristic of no-load switch-in, remanence simulation methods were presented. Quantitative analysis of the effect of closing making angle and core remanence on inrush current peak value, meanwhile, the distribution of magnetic field inside the tank during the transient process. The result indicated that the closing making angle and core remanence have obvious effect on inrush current peak value. The research results of this paper can be used to guide the formulation of no-load switch-in strategy of interface transformer, which was of great significance to ensure the smooth operation of HVDC Flexible system.
2021-09-16
Sun, Jin, Yao, Xiaomin, Wang, Shangping, Wu, Ying.  2020.  Non-Repudiation Storage and Access Control Scheme of Insurance Data Based on Blockchain in IPFS. IEEE Access. 8:155145–155155.
The insurance business plays a quite significant role in people's lives, but in the process of claim settlement, there are still various frauds such that the insurance companies' refusal to compensate or customers' malicious fraud to obtain compensation. Therefore, it is very important to ensure fair and just claims. In this paper, by combining the blockchain technology and the ciphertext-policy attribute-based encryption system, we build a scheme for secure storage and update for insurance records under the InterPlanetary File System (IPFS) storage environment in the insurance system. In this scheme, we use the fog node to outsource encryption of insurance records to improve the efficiency of the staff; In addition, we store encrypted insurance records on IPFS to ensure the security of the storage platform and avoid the single point failure of the centralized mechanism. In addition, we use the immutability of the blockchain to achieve the non-repudiation of both insurance companies and the client. The security proof shows that the proposed scheme can achieve selective security against selected keyword attacks. Our scheme is efficient and feasible under performance analysis and real data set experiments.
2021-01-20
Li, M., Chang, H., Xiang, Y., An, D..  2020.  A Novel Anti-Collusion Audio Fingerprinting Scheme Based on Fourier Coefficients Reversing. IEEE Signal Processing Letters. 27:1794—1798.

Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.

2021-03-22
Kumar, A..  2020.  A Novel Privacy Preserving HMAC Algorithm Based on Homomorphic Encryption and Auditing for Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :198–202.
Cloud is the perfect way to hold our data every day. Yet the confidentiality of our data is a big concern in the handling of cloud data. Data integrity, authentication and confidentiality are basic security threats in the cloud. Cryptography techniques and Third Party Auditor (TPA) are very useful to impose the integrity and confidentiality of data. In this paper, a system is proposed Enhancing data protection that is housed in cloud computing. The suggested solution uses the RSA algorithm and the AES algorithm to encrypt user data. The hybridization of these two algorithms allows better data protection before it is stored in the cloud. Secure hash algorithm 512 is used to compute the Hash Message Authentication Code (HMAC). A stable audit program is also introduced for Third Party Auditor (TPA) use. The suggested algorithm is applied in python programming and tested in a simple sample format. It is checked that the proposed algorithm functions well to guarantee greater data protection.
2021-05-25
Bogosyan, Seta, Gokasan, Metin.  2020.  Novel Strategies for Security-hardened BMS for Extremely Fast Charging of BEVs. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). :1–7.

The increased power capacity and networking requirements in Extremely Fast Charging (XFC) systems for battery electric vehicles (BEVs) and the resulting increase in the adversarial attack surface call for security measures to be taken in the involved cyber-physical system (CPS). Within this system, the security of the BEV's battery management system (BMS) is of critical importance as the BMS is the first line of defense between the vehicle and the charge station. This study proposes an optimal control and moving-target defense (MTD) based novel approach for the security of the vehicle BMS) focusing on the charging process, during which a compromised vehicle may contaminate the XFC station and the whole grid. This paper is part of our ongoing research, which is one of the few, if not the first, reported studies in the literature on security-hardened BMS, aiming to increase the security and performance of operations between the charging station, the BMS and the battery system of electric vehicles. The developed MTD based switching strategy makes use of redundancies in the controller and feedback design. The performed simulations demonstrate an increased unpredictability and acceptable charging performance under adversarial attacks.

2021-10-04
Zhong, Chiyang, Sakis Meliopoulos, A. P., AlOwaifeer, Maad, Xie, Jiahao, Ilunga, Gad.  2020.  Object-Oriented Security Constrained Quadratic Optimal Power Flow. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Increased penetration of distributed energy resources (DERs) creates challenges in formulating the security constrained optimal power flow (SCOPF) problem as the number of models for these resources proliferate. Specifically, the number of devices with different mathematical models is large and their integration into the SCOPF becomes tedious. Henceforth, a process that seamlessly models and integrates such new devices into the SCOPF problem is needed. We propose an object-oriented modeling approach that leads to the autonomous formation of the SCOPF problem. All device models in the system are cast into a universal syntax. We have also introduced a quadratization method which makes the models consisting of linear and quadratic equations, if nonlinear. We refer to this model as the State and Control Quadratized Device Model (SCQDM). The SCQDM includes a number of equations and a number of inequalities expressing the operating limits of the device. The SCOPF problem is then formed in a seamless manner by operating only on the SCQDM device objects. The SCOPF problem, formed this way, is also quadratic (i.e. consists of linear and quadratic equations), and of the same form and syntax as the SCQDM for an individual device. For this reason, we named it security constrained quadratic optimal power flow (SCQOPF). We solve the SCQOPF problem using a sequential linear programming (SLP) algorithm and compare the results with those obtained from the commercial solver Knitro on the IEEE 57 bus system.
2021-02-16
Mujib, M., Sari, R. F..  2020.  Performance Evaluation of Data Center Network with Network Micro-segmentation. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). :27—32.

Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.

2021-05-25
Baccari, Sihem, Touati, Haifa, Hadded, Mohamed, Muhlethaler, Paul.  2020.  Performance Impact Analysis of Security Attacks on Cross-Layer Routing Protocols in Vehicular Ad hoc Networks. 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1—6.

Recently, several cross-layer protocols have been designed for vehicular networks to optimize data dissemination by ensuring internal communications between routing and MAC layers. In this context, a cross-layer protocol, called TDMA-aware Routing Protocol for Multi-hop communications (TRPM), was proposed in order to efficiently select a relay node based on time slot scheduling information obtained from the MAC layer. However, due to the constant evolution of cyber-attacks on the routing and MAC layers, data dissemination in vehicular networks is vulnerable to several types of attack. In this paper, we identify the different attack models that can disrupt the cross-layer operation of the TRPM protocol and assess their impact on performance through simulation. Several new vulnerabilities related to the MAC slot scheduling process are identified. Exploiting of these vulnerabilities would lead to severe channel capacity wastage where up to half of the free slots could not be reserved.

2021-11-08
Ruchkin, Vladimir, Fulin, Vladimir, Romanchuk, Vitaly, Koryachko, Alexei, Ruchkina, Ekaterina.  2020.  Personal Trusted Platform Module for the Multi-Core System of 5G Security and Privacy. 2020 ELEKTRO. :1–4.
The article is devoted to the choice of personal means of the 5G defense in dependence of hard- and software available to the user. The universal module MS 127.04 and its software compatible unit can be universally configured for use. An intelligent hardware and software platform is proposed for multi-core setting of policies for the automatic encryption of confidential data and selective blocking related to the implementation of computing security and confidentiality of data transfer, using such additional specially. A platform that resists the external influences is described. The platform is based on a universal module MS 127.05 (produced in Russia), that is a heterogeneous multiprocessor system on a chip), the system features 16 processor cores (NeuroMatrix Core 4) and five ARM Cortex-A5 units (ULSI 1879VM8Ya.
2021-01-28
He, H. Y., Yang, Z. Guo, Chen, X. N..  2020.  PERT: Payload Encoding Representation from Transformer for Encrypted Traffic Classification. 2020 ITU Kaleidoscope: Industry-Driven Digital Transformation (ITU K). :1—8.

Traffic identification becomes more important yet more challenging as related encryption techniques are rapidly developing nowadays. In difference to recent deep learning methods that apply image processing to solve such encrypted traffic problems, in this paper, we propose a method named Payload Encoding Representation from Transformer (PERT) to perform automatic traffic feature extraction using a state-of-the-art dynamic word embedding technique. Based on this, we further provide a traffic classification framework in which unlabeled traffic is utilized to pre-train an encoding network that learns the contextual distribution of traffic payload bytes. Then, the downward classification reuses the pre-trained network to obtain an enhanced classification result. By implementing experiments on a public encrypted traffic data set and our captured Android HTTPS traffic, we prove the proposed method can achieve an obvious better effectiveness than other compared baselines. To the best of our knowledge, this is the first time the encrypted traffic classification with the dynamic word embedding alone with its pre-training strategy has been addressed.

2021-07-27
Zheng, Zhihao, Cao, Zhenfu, Shen, Jiachen.  2020.  Practical and Secure Circular Range Search on Private Spatial Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :639–645.
With the location-based services (LBS) booming, the volume of spatial data inevitably explodes. In order to reduce local storage and computational overhead, users tend to outsource data and initiate queries to the cloud. However, sensitive data or queries may be compromised if cloud server has access to raw data and plaintext token. To cope with this problem, searchable encryption for geometric range is applied. Geometric range search has wide applications in many scenarios, especially the circular range search. In this paper, a practical and secure circular range search scheme (PSCS) is proposed to support searching for spatial data in a circular range. With our scheme, a semi-honest cloud server will return data for a given circular range correctly without uncovering index privacy or query privacy. We propose a polynomial split algorithm which can decompose the inner product calculation neatly. Then, we define the security of our PSCS formally and prove that it is secure under same-closeness-pattern chosen-plaintext attacks (CLS-CPA) in theory. In addition, we demonstrate the efficiency and accuracy through analysis and experiments compared with existing schemes.
2021-03-04
Wang, Y., Wang, Z., Xie, Z., Zhao, N., Chen, J., Zhang, W., Sui, K., Pei, D..  2020.  Practical and White-Box Anomaly Detection through Unsupervised and Active Learning. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.

2021-02-10
Kishimoto, K., Taniguchi, Y., Iguchi, N..  2020.  A Practical Exercise System Using Virtual Machines for Learning Cross-Site Scripting Countermeasures. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.

2021-02-16
Monakhov, Y. M., Monakhov, M. Y., Telny, A. V., Kuznetsova, A. P..  2020.  Prediction of the Information Security State of the Protected Object Using Recurrent Correction. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :602—605.

This article presents the modeling results of the ability to improve the accuracy of predicting the state of information security in the space of parameters of its threats. Information security of the protected object is considered as a dynamic system. Security threats to the protected object are used as the security system parameters most qualitatively and fully describing its behavior. The number of threats considered determines the dimension of the security state space. Based on the dynamic properties of changes in information security threats, the space region of the security system possible position at the moments of subsequent measurements of its state (a comprehensive security audit) is predicted. The corrected state of the information security system is considered to be the intersection of the area of subsequent measurement of the state of the system (integrated security audit) with the previously predicted area of the parameter space. Such a way to increase the accuracy of determining the state of a dynamic system in the space of its parameters can be called dynamic recurrent correction method. It is possible to use this method if the comprehensive security audit frequency is significantly higher than the frequency of monitoring changes in the dynamics of specific threats to information security. In addition, the data of the audit results and the errors of their receipt must be statistically independent with the results of monitoring changes in the dynamics of specific threats to information security. Improving the accuracy of the state of information security assessment in the space of the parameters of its threats can be used for various applications, including clarification of the communication channels characteristics, increasing the availability and efficiency of the telecommunications network, if it is an object of protection.

2021-08-17
Shubina, Viktoriia, Ometov, Aleksandr, Andreev, Sergey, Niculescu, Dragos, Lohan, Elena Simona.  2020.  Privacy versus Location Accuracy in Opportunistic Wearable Networks. 2020 International Conference on Localization and GNSS (ICL-GNSS). :1—6.
Future wearable devices are expected to increasingly exchange their positioning information with various Location-Based Services (LBSs). Wearable applications can include activity-based health and fitness recommendations, location-based social networking, location-based gamification, among many others. With the growing opportunities for LBSs, it is expected that location privacy concerns will also increase significantly. Particularly, in opportunistic wireless networks based on device-to-device (D2D) connectivity, a user can request a higher level of control over own location privacy, which may result in more flexible permissions granted to wearable devices. This translates into the ability to perform location obfuscation to the desired degree when interacting with other wearables or service providers across the network. In this paper, we argue that specific errors in the disclosed location information feature two components: a measurement error inherent to the localization algorithm used by a wearable device and an intentional (or obfuscation) error that may be based on a trade-off between a particular LBS and a desired location privacy level. This work aims to study the trade-off between positioning accuracy and location information privacy in densely crowded scenarios by introducing two privacy-centric metrics.
2021-06-28
Mounnan, Oussama, Mouatasim, Abdelkrim El, Manad, Otman, Hidar, Tarik, El Kalam, Anas Abou, Idboufker, Noureddine.  2020.  Privacy-Aware and Authentication based on Blockchain with Fault Tolerance for IoT enabled Fog Computing. 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC). :347–352.
Fog computing is a new distributed computing paradigm that extends the cloud to the network edge. Fog computing aims at improving quality of service, data access, networking, computation and storage. However, the security and privacy issues persist, even if many cloud solutions were proposed. Indeed, Fog computing introduces new challenges in terms of security and privacy, due to its specific features such as mobility, geo-distribution and heterogeneity etc. Blockchain is an emergent concept bringing efficiency in many fields. In this paper, we propose a new access control scheme based on blockchain technology for the fog computing with fault tolerance in the context of the Internet of Things. Blockchain is used to provide secure management authentication and access process to IoT devices. Each network entity authenticates in the blockchain via the wallet, which allows a secure communication in decentralized environment, hence it achieves the security objectives. In addition, we propose to establish a secure connection between the users and the IoT devices, if their attributes satisfy the policy stored in the blockchain by smart contract. We also address the blockchain transparency problem by the encryption of the users attributes both in the policy and in the request. An authorization token is generated if the encrypted attributes are identical. Moreover, our proposition offers higher scalability, availability and fault tolerance in Fog nodes due to the implementation of load balancing through the Min-Min algorithm.
2021-01-11
Whyte, C..  2020.  Problems of Poison: New Paradigms and "Agreed" Competition in the Era of AI-Enabled Cyber Operations. 2020 12th International Conference on Cyber Conflict (CyCon). 1300:215–232.
Few developments seem as poised to alter the characteristics of security in the digital age as the advent of artificial intelligence (AI) technologies. For national defense establishments, the emergence of AI techniques is particularly worrisome, not least because prototype applications already exist. Cyber attacks augmented by AI portend the tailored manipulation of human vectors within the attack surface of important societal systems at great scale, as well as opportunities for calamity resulting from the secondment of technical skill from the hacker to the algorithm. Arguably most important, however, is the fact that AI-enabled cyber campaigns contain great potential for operational obfuscation and strategic misdirection. At the operational level, techniques for piggybacking onto routine activities and for adaptive evasion of security protocols add uncertainty, complicating the defensive mission particularly where adversarial learning tools are employed in offense. Strategically, AI-enabled cyber operations offer distinct attempts to persistently shape the spectrum of cyber contention may be able to pursue conflict outcomes beyond the expected scope of adversary operation. On the other, AI-augmented cyber defenses incorporated into national defense postures are likely to be vulnerable to "poisoning" attacks that predict, manipulate and subvert the functionality of defensive algorithms. This article takes on two primary tasks. First, it considers and categorizes the primary ways in which AI technologies are likely to augment offensive cyber operations, including the shape of cyber activities designed to target AI systems. Then, it frames a discussion of implications for deterrence in cyberspace by referring to the policy of persistent engagement, agreed competition and forward defense promulgated in 2018 by the United States. Here, it is argued that the centrality of cyberspace to the deployment and operation of soon-to-be-ubiquitous AI systems implies new motivations for operation within the domain, complicating numerous assumptions that underlie current approaches. In particular, AI cyber operations pose unique measurement issues for the policy regime.
2021-01-28
Siddiquie, K., Shafqat, N., Masood, A., Abbas, H., Shahid, W. b.  2020.  Profiling Vulnerabilities Threatening Dual Persona in Android Framework. 2019 International Conference on Advances in the Emerging Computing Technologies (AECT). :1—6.

Enterprises round the globe have been searching for a way to securely empower AndroidTM devices for work but have spurned away from the Android platform due to ongoing fragmentation and security concerns. Discrepant vulnerabilities have been reported in Android smartphones since Android Lollipop release. Smartphones can be easily hacked by installing a malicious application, visiting an infectious browser, receiving a crafted MMS, interplaying with plug-ins, certificate forging, checksum collisions, inter-process communication (IPC) abuse and much more. To highlight this issue a manual analysis of Android vulnerabilities is performed, by using data available in National Vulnerability Database NVD and Android Vulnerability website. This paper includes the vulnerabilities that risked the dual persona support in Android 5 and above, till Dec 2017. In our security threat analysis, we have identified a comprehensive list of Android vulnerabilities, vulnerable Android versions, manufacturers, and information regarding complete and partial patches released. So far, there is no published research work that systematically presents all the vulnerabilities and vulnerability assessment for dual persona feature of Android's smartphone. The data provided in this paper will open ways to future research and present a better Android security model for dual persona.