Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-08-11
Gallenmüller, Sebastian, Naab, Johannes, Adam, Iris, Carle, Georg.  2020.  5G QoS: Impact of Security Functions on Latency. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Network slicing is considered a key enabler to 5th Generation (5G) communication networks. Mobile network operators may deploy network slices-complete logical networks customized for specific services expecting a certain Quality of Service (QoS). New business models like Network Slice-as-a-Service offerings to customers from vertical industries require negotiated Service Level Agreements (SLA), and network providers need automated enforcement mechanisms to assure QoS during instantiation and operation of slices. In this paper, we focus on ultra-reliable low-latency communication (URLLC). We propose a software architecture for security functions based on off-the-shelf hardware and open-source software and demonstrate, through a series of measurements, that the strict requirements of URLLC services can be achieved. As a real-world example, we perform our experiments using the intrusion prevention system (IPS) Snort to demonstrate the impact of security functions on latency. Our findings lead to the creation of a model predicting the system load that still meets the URLLC latency requirement. We fully disclose the artifacts presented in this paper including pcap traces, measurement tools, and plotting scripts at https://gallenmu.github.io/low-latency.
2021-01-25
Mazlisham, M. H., Adnan, S. F. Syed, Isa, M. A. Mat, Mahad, Z., Asbullah, M. A..  2020.  Analysis of Rabin-P and RSA-OAEP Encryption Scheme on Microprocessor Platform. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :292–296.

This paper presents an analysis of Rabin-P encryption scheme on microprocessor platform in term of runtime and energy consumption. A microprocessor is one of the devices utilized in the Internet of Things (IoT) structure. Therefore, in this work, the microprocessor selected is the Raspberry Pi that is powered with a smaller version of the Linux operating system for embedded devices, the Raspbian OS. A comparative analysis is then conducted for Rabin-p and RSA-OAEP cryptosystem in the Raspberry Pi setup. A conclusion can be made that Rabin-p performs faster in comparison to the RSA-OAEP cryptosystem in the microprocessor platform. Rabin-p can improve decryption efficiency by using only one modular exponentiation while produces a unique message after the decryption process.

2021-01-22
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., Boutaba, R..  2020.  ATMoS: Autonomous Threat Mitigation in SDN using Reinforcement Learning. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Machine Learning has revolutionized many fields of computer science. Reinforcement Learning (RL), in particular, stands out as a solution to sequential decision making problems. With the growing complexity of computer networks in the face of new emerging technologies, such as the Internet of Things and the growing complexity of threat vectors, there is a dire need for autonomous network systems. RL is a viable solution for achieving this autonomy. Software-defined Networking (SDN) provides a global network view and programmability of network behaviour, which can be employed for security management. Previous works in RL-based threat mitigation have mostly focused on very specific problems, mostly non-sequential, with ad-hoc solutions. In this paper, we propose ATMoS, a general framework designed to facilitate the rapid design of RL applications for network security management using SDN. We evaluate our framework for implementing RL applications for threat mitigation, by showcasing the use of ATMoS with a Neural Fitted Q-learning agent to mitigate an Advanced Persistent Threat. We present the RL model's convergence results showing the feasibility of our solution for active threat mitigation.
2021-02-08
Zhang, J..  2020.  DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviours. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :313–316.
Malware refers to any software accessing or being installed in a system without the authorisation of administrators. Various malware has been widely used for cyber-criminals to accomplish their evil intentions and goals. To combat the increasing amount and reduce the threat of malicious programs, a novel deep learning framework, which uses NLP techniques for reference, combines CNN and LSTM neurones to capture the locally spatial correlations and learn from sequential longterm dependency is proposed. Hence, high-level abstractions and representations are automatically extracted for the malware classification task. The classification accuracy improves from 0.81 (best one by Random Forest) to approximately 1.0.
2021-01-22
Burr, B., Wang, S., Salmon, G., Soliman, H..  2020.  On the Detection of Persistent Attacks using Alert Graphs and Event Feature Embeddings. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—4.
Intrusion Detection Systems (IDS) generate a high volume of alerts that security analysts do not have the resources to explore fully. Modelling attacks, especially the coordinated campaigns of Advanced Persistent Threats (APTs), in a visually-interpretable way is a useful approach for network security. Graph models combine multiple alerts and are well suited for visualization and interpretation, increasing security effectiveness. In this paper, we use feature embeddings, learned from network event logs, and community detection to construct and segment alert graphs of related alerts and networks hosts. We posit that such graphs can aid security analysts in investigating alerts and may capture multiple aspects of an APT attack. The eventual goal of this approach is to construct interpretable attack graphs and extract causality information to identify coordinated attacks.
2021-03-29
Xu, Z., Easwaran, A..  2020.  A Game-Theoretic Approach to Secure Estimation and Control for Cyber-Physical Systems with a Digital Twin. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :20–29.
Cyber-Physical Systems (CPSs) play an increasingly significant role in many critical applications. These valuable applications attract various sophisticated attacks. This paper considers a stealthy estimation attack, which aims to modify the state estimation of the CPSs. The intelligent attackers can learn defense strategies and use clandestine attack strategies to avoid detection. To address the issue, we design a Chi-square detector in a Digital Twin (DT), which is an online digital model of the physical system. We use a Signaling Game with Evidence (SGE) to find the optimal attack and defense strategies. Our analytical results show that the proposed defense strategies can mitigate the impact of the attack on the physical estimation and guarantee the stability of the CPSs. Finally, we use an illustrative application to evaluate the performance of the proposed framework.
2021-03-01
Said, S., Bouloiz, H., Gallab, M..  2020.  Identification and Assessment of Risks Affecting Sociotechnical Systems Resilience. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA). :1–10.
Resilience is regarded nowadays as the ideal solution that can be envisaged by sociotechnical systems for coping with potential threats and crises. This being said, gaining and maintaining this ability is not always easy, given the multitude of risks driving the adverse and challenging events. This paper aims to propose a method consecrated to the assessment of risks directly affecting resilience. This work is conducted within the framework of risk assessment and resilience engineering approaches. A 5×5 matrix, dedicated to the identification and assessment of risk factors that constitute threats to the system resilience, has been elaborated. This matrix consists of two axes, namely, the impact on resilience metrics and the availability and effectiveness of resilience planning. Checklists serving to collect information about these two attributes are established and a case study is undertaken. In this paper, a new method for identifying and assessing risk factors menacing directly the resilience of a given system is presented. The analysis of these risks must be given priority to make the system more resilient to shocks.
2021-01-25
Abbas, M. S., Mahdi, S. S., Hussien, S. A..  2020.  Security Improvement of Cloud Data Using Hybrid Cryptography and Steganography. 2020 International Conference on Computer Science and Software Engineering (CSASE). :123–127.
One of the significant advancements in information technology is Cloud computing, but the security issue of data storage is a big problem in the cloud environment. That is why a system is proposed in this paper for improving the security of cloud data using encryption, information concealment, and hashing functions. In the data encryption phase, we implemented hybrid encryption using the algorithm of AES symmetric encryption and the algorithm of RSA asymmetric encryption. Next, the encrypted data will be hidden in an image using LSB algorithm. In the data validation phase, we use the SHA hashing algorithm. Also, in our suggestion, we compress the data using the LZW algorithm before hiding it in the image. Thus, it allows hiding as much data as possible. By using information concealment technology and mixed encryption, we can achieve strong data security. In this paper, PSNR and SSIM values were calculated in addition to the graph to evaluate the image masking performance before and after applying the compression process. The results showed that PSNR values of stego-image are better for compressed data compared to data before compression.
2021-06-02
Xu, Yizheng.  2020.  Application Research Based on Machine Learning in Network Privacy Security. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :237—240.
As the hottest frontier technology in the field of artificial intelligence, machine learning is subverting various industries step by step. In the future, it will penetrate all aspects of our lives and become an indispensable technology around us. Among them, network security is an area where machine learning can show off its strengths. Among many network security problems, privacy protection is a more difficult problem, so it needs more introduction of new technologies, new methods and new ideas such as machine learning to help solve some problems. The research contents for this include four parts: an overview of machine learning, the significance of machine learning in network security, the application process of machine learning in network security research, and the application of machine learning in privacy protection. It focuses on the issues related to privacy protection and proposes to combine the most advanced matching algorithm in deep learning methods with information theory data protection technology, so as to introduce it into biometric authentication. While ensuring that the loss of matching accuracy is minimal, a high-standard privacy protection algorithm is concluded, which enables businesses, government entities, and end users to more widely accept privacy protection technology.
2021-03-29
Khorev, P. B., Zheltov, M. I..  2020.  Assessing Information Risks When Using Web Applications Using Fuzzy Logic. 2020 V International Conference on Information Technologies in Engineering Education ( Inforino ). :1—4.

The article looks at information risk concepts, how it is assessed, web application vulnerabilities and how to identify them. A prototype web application vulnerability scanner has been developed with a function of information risk assessment based on fuzzy logic. The software developed is used in laboratory sessions on data protection discipline.

2021-02-23
Millar, K., Cheng, A., Chew, H. G., Lim, C..  2020.  Characterising Network-Connected Devices Using Affiliation Graphs. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—6.

Device management in large networks is of growing importance to network administrators and security analysts alike. The composition of devices on a network can help forecast future traffic demand as well as identify devices that may pose a security risk. However, the sheer number and diversity of devices that comprise most modern networks have vastly increased the management complexity. Motivated by a need for an encryption-invariant device management strategy, we use affiliation graphs to develop a methodology that reveals key insights into the devices acting on a network using only the source and destination IP addresses. Through an empirical analysis of the devices on a university campus network, we provide an example methodology to infer a device's characteristics (e.g., operating system) through the services it communicates with via the Internet.

2021-09-07
Jonker, Mattijs, Sperotto, Anna, Pras, Aiko.  2020.  DDoS Mitigation: A Measurement-Based Approach. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Society heavily relies upon the Internet for global communications. Simultaneously, Internet stability and reliability are continuously subject to deliberate threats. These threats include (Distributed) Denial-of-Service (DDoS) attacks, which can potentially be devastating. As a result of DDoS, businesses lose hundreds of millions of dollars annually. Moreover, when it comes to vital infrastructure, national safety and even lives could be at stake. Effective defenses are therefore an absolute necessity. Prospective users of readily available mitigation solutions find themselves having many shapes and sizes to choose from, the right fit of which may, however, not always be apparent. In addition, the deployment and operation of mitigation solutions may come with hidden hazards that need to be better understood. Policy makers and governments also find themselves facing questions concerning what needs to be done to promote cybersafety on a national level. Developing an optimal course of action to deal with DDoS, therefore, also brings about societal challenges. Even though the DDoS problem is by no means new, the scale of the problem is still unclear. We do not know exactly what it is we are defending against and getting a better understanding of attacks is essential to addressing the problem head-on. To advance situational awareness, many technical and societal challenges need still to be tackled. Given the central importance of better understanding the DDoS problem to improve overall Internet security, the thesis that we summarize in this paper has three main contributions. First, we rigorously characterize attacks and attacked targets at scale. Second, we advance knowledge about the Internet-wide adoption, deployment and operational use of various mitigation solutions. Finally, we investigate hidden hazards that can render mitigation solutions altogether ineffective.
2021-08-18
Zhao, Huifang, Yang, Fang, Cui, Yuxiang, Yang, Rui, Pan, Dafeng, Zhao, Liang.  2020.  Design of a New Lightweight Stream Cipher VHFO Algorithm. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :379—382.
This paper designed the lightweight stream ciphers named VHFO. It used OFB. The key-stream size is 128-bit while the IV is specified to be 128 bits. Our security evaluation shows that VHFO can achieve enough security margin against known attacks. The implementation efficiency of both software and hardware based on VHFO is higher than others in RFID environment.
2021-01-15
Kumar, A., Bhavsar, A., Verma, R..  2020.  Detecting Deepfakes with Metric Learning. 2020 8th International Workshop on Biometrics and Forensics (IWBF). :1—6.

With the arrival of several face-swapping applications such as FaceApp, SnapChat, MixBooth, FaceBlender and many more, the authenticity of digital media content is hanging on a very loose thread. On social media platforms, videos are widely circulated often at a high compression factor. In this work, we analyze several deep learning approaches in the context of deepfakes classification in high compression scenarios and demonstrate that a proposed approach based on metric learning can be very effective in performing such a classification. Using less number of frames per video to assess its realism, the metric learning approach using a triplet network architecture proves to be fruitful. It learns to enhance the feature space distance between the cluster of real and fake videos embedding vectors. We validated our approaches on two datasets to analyze the behavior in different environments. We achieved a state-of-the-art AUC score of 99.2% on the Celeb-DF dataset and accuracy of 90.71% on a highly compressed Neural Texture dataset. Our approach is especially helpful on social media platforms where data compression is inevitable.

2020-12-28
Yu, Y., Li, H., Fu, Y., Wu, X..  2020.  A Dynamic Updating Method for Release of Privacy Protected Data Based on Privacy Differences in Relational Data. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :23—27.

To improve dynamic updating of privacy protected data release caused by multidimensional sensitivity attribute privacy differences in relational data, we propose a dynamic updating method for privacy protection data release based on the multidimensional privacy differences. By adopting the multi-sensitive bucketization technology (MSB), this method performs quantitative classification of the multidimensional sensitive privacy difference and the recorded value, provides the basic updating operation unit, and thereby realizes dynamic updating of privacy protection data release based on the privacy difference among relational data. The experiment confirms that the method can secure the data updating efficiency while ensuring the quality of data release.

2021-03-29
Erulanova, A., Soltan, G., Baidildina, A., Amangeldina, M., Aset, A..  2020.  Expert System for Assessing the Efficiency of Information Security. 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE). :355—359.

The paper considers an expert system that provides an assessment of the state of information security in authorities and organizations of various forms of ownership. The proposed expert system allows to evaluate the state of compliance with the requirements of both organizational and technical measures to ensure the protection of information, as well as the level of compliance with the requirements of the information protection system in general. The expert assessment method is used as a basic method for assessing the state of information protection. The developed expert system provides a significant reduction in routine operations during the audit of information security. The results of the assessment are presented quite clearly and provide an opportunity for the leadership of the authorities and organizations to make informed decisions to further improve the information protection system.

2021-01-11
Mihanpour, A., Rashti, M. J., Alavi, S. E..  2020.  Human Action Recognition in Video Using DB-LSTM and ResNet. 2020 6th International Conference on Web Research (ICWR). :133—138.

Human action recognition in video is one of the most widely applied topics in the field of image and video processing, with many applications in surveillance (security, sports, etc.), activity detection, video-content-based monitoring, man-machine interaction, and health/disability care. Action recognition is a complex process that faces several challenges such as occlusion, camera movement, viewpoint move, background clutter, and brightness variation. In this study, we propose a novel human action recognition method using convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks, using only raw video frames. First, deep features are extracted from video frames using a pre-trained CNN architecture called ResNet152. The sequential information of the frames is then learned using the DB-LSTM network, where multiple layers are stacked together in both forward and backward passes of DB-LSTM, to increase depth. The evaluation results of the proposed method using PyTorch, compared to the state-of-the-art methods, show a considerable increase in the efficiency of action recognition on the UCF 101 dataset, reaching 95% recognition accuracy. The choice of the CNN architecture, proper tuning of input parameters, and techniques such as data augmentation contribute to the accuracy boost in this study.

2021-07-27
Kabir, H., Mohsin, M. H. Bin, Kantola, R..  2020.  Implementing a Security Policy Management for 5G Customer Edge Nodes. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—8.
The upcoming 5th generation (5G) mobile networks need to support ultra-reliable communication for business and life-critical applications. To do that 5G must offer higher degree of reliability than the current Internet, where networks are often subjected to Internet attacks, such as denial of service (DoS) and unwanted traffic. Besides improving the mitigation of Internet attacks, we propose that ultra-reliable mobile networks should only carry the expected user traffic to achieve a predictable level of reliability under malicious activity. To accomplish this, we introduce device-oriented communication security policies. Mobile networks have classically introduced a policy architecture that includes Policy and Charging Control (PCC) functions in LTE. However, in state of the art, this policy architecture is limited to QoS policies for end devices only. In this paper, we present experimental implementation of a Security Policy Management (SPM) system that accounts communication security interests of end devices. The paper also briefly presents the overall security architecture, where the policies set for devices or services in a network slice providing ultra-reliability, are enforced by a network edge node (via SPM) to only admit the expected traffic, by default treating the rest as unwanted traffic.
2021-08-02
Velan S., Senthil.  2020.  Introducing Aspect-Oriented Programming in Improving the Modularity of Middleware for Internet of Things. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1—5.
Internet of Things (IoT) has become the buzzword for the development of Smart City and its applications. In this context, development of supporting software forms the core part of the IoT infrastructure. A Middleware sits in between the IoT devices and interacts between them to exchange data among the components of the automated architecture. The Middleware services include hand shaking, data transfer and security among its core set of functionalities. It also includes cross-cutting functional services such as authentication, logging and caching. A software that can run these Middleware services requires a careful choice of a good software modelling technique. Aspect-Oriented Programming (AOP) is a software development methodology that can be used to independently encapsulate the core and cross-cutting functionalities of the Middleware services of the IoT infrastructure. In this paper, an attempt has been made using a simulation environment to independently model the two orthogonal functionalities of the Middleware with the focus to improve its modularity. Further, a quantitative measurement of the core design property of cohesion has been done to infer on the improvement in the reusability of the modules encapsulated in the Middleware of IoT. Based on the measurement, it was found that the modularity and reusability of functionalities in the Middleware software has improved in the AspectJ version compared to its equivalent Java version.
2021-08-12
Karie, Nickson M., Sahri, Nor Masri, Haskell-Dowland, Paul.  2020.  IoT Threat Detection Advances, Challenges and Future Directions. 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT). :22—29.
It is predicted that, the number of connected Internet of Things (IoT) devices will rise to 38.6 billion by 2025 and an estimated 50 billion by 2030. The increased deployment of IoT devices into diverse areas of our life has provided us with significant benefits such as improved quality of life and task automation. However, each time a new IoT device is deployed, new and unique security threats emerge or are introduced into the environment under which the device must operate. Instantaneous detection and mitigation of every security threat introduced by different IoT devices deployed can be very challenging. This is because many of the IoT devices are manufactured with no consideration of their security implications. In this paper therefore, we review existing literature and present IoT threat detection research advances with a focus on the various IoT security challenges as well as the current developments towards combating cyber security threats in IoT networks. However, this paper also highlights several future research directions in the IoT domain.
2021-02-03
Ceron, J. M., Scholten, C., Pras, A., Santanna, J..  2020.  MikroTik Devices Landscape, Realistic Honeypots, and Automated Attack Classification. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.

In 2018, several malware campaigns targeted and succeed to infect millions of low-cost routers (malwares e.g., VPN-Filter, Navidade, and SonarDNS). These routers were used, then, for all sort of cybercrimes: from DDoS attacks to ransomware. MikroTik routers are a peculiar example of low-cost routers. These routers are used to provide both last mile access to home users and are used in core network infrastructure. Half of the core routers used in one of the biggest Internet exchanges in the world are MikroTik devices. The problem is that vulnerable firmwares (RouterOS) used in homeusers houses are also used in core networks. In this paper, we are the first to quantify the problem that infecting MikroTik devices would pose to the Internet. Based on more than 4 TB of data, we reveal more than 4 million MikroTik devices in the world. Then, we propose an easy-to-deploy MikroTik honeypot and collect more than 17 millions packets, in 45 days, from sensors deployed in Australia, Brazil, China, India, Netherlands, and the United States. Finally, we use the collected data from our honeypots to automatically classify and assess attacks tailored to MikroTik devices. All our source-codes and analysis are publicly available. We believe that our honeypots and our findings in this paper foster security improvements in MikroTik devices worldwide.

2020-12-28
Borio, D., Gioia, C..  2020.  Mitigation of Frequency-Hopped Tick Jamming Signals. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). :624—630.

Global Navigation Satellite System (GNSS) jamming is an evolving technology where new modulations are progressively introduced in order to reduce the impact of interference mitigation techniques such as Adaptive Notch Filters (ANFs). The Standardisation of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation (STRIKE3) project recently described a new class of jamming signals, called tick signals, where a basic frequency tick is hopped over a large frequency range. In this way, discontinuities are introduced in the instantaneous frequency of the jamming signals. These discontinuities reduce the effectiveness of ANFs, which unable to track the jamming signal. This paper analyses the effectiveness of interference mitigation techniques with respect to frequency-hopped tick jamming signals. ANFs and Robust Interference Mitigation (RIM) techniques are analysed. From the analysis, it emerges that, despite the presence of frequency discontinuities, ANFs provide some margin against tick signals. However, frequency discontinuities prevent ANFs to remove all the jamming components and receiver operations are denied for moderate Jamming to Noise power ratio (J/N) values, RIM techniques are not affected by the presence of frequency discontinuities and significantly higher jamming power are sustained by the receiver when this type of techniques is adopted.

2021-02-03
Bellas, A., Perrin, S., Malone, B., Rogers, K., Lucas, G., Phillips, E., Tossell, C., Visser, E. d.  2020.  Rapport Building with Social Robots as a Method for Improving Mission Debriefing in Human-Robot Teams. 2020 Systems and Information Engineering Design Symposium (SIEDS). :160—163.

Conflicts may arise at any time during military debriefing meetings, especially in high intensity deployed settings. When such conflicts arise, it takes time to get everyone back into a receptive state of mind so that they engage in reflective discussion rather than unproductive arguing. It has been proposed by some that the use of social robots equipped with social abilities such as emotion regulation through rapport building may help to deescalate these situations to facilitate critical operational decisions. However, in military settings, the same AI agent used in the pre-brief of a mission may not be the same one used in the debrief. The purpose of this study was to determine whether a brief rapport-building session with a social robot could create a connection between a human and a robot agent, and whether consistency in the embodiment of the robot agent was necessary for maintaining this connection once formed. We report the results of a pilot study conducted at the United States Air Force Academy which simulated a military mission (i.e., Gravity and Strike). Participants' connection with the agent, sense of trust, and overall likeability revealed that early rapport building can be beneficial for military missions.

2021-06-30
He, Kexun, Qin, Kongjian, Wang, Changyuan, Fang, Xiyu.  2020.  Research on Cyber Security Test Method for GNSS of Intelligent Connected Vehicle. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :200—203.
Intelligent connected vehicle cyber security has attracted widespread attention this year. The safety of GNSS information is related to the safety of cars and has become a key technology. This paper researches the cyber security characteristics of intelligent connected vehicle navigation and positioning by analyzing the signal receiving mode of navigation and positioning on the vehicle terminal. The article expounds the principles of deceiving and interfering cyber security that lead to the safety of GNSS information. This paper studies the key causes of cyber security. Based on key causes, the article constructs a GNSS cyber security test method by combining a navigation signal simulator and an interference signal generator. The results shows that the method can realize the security test of the GNSS information of the vehicle terminal. This method provides a test method for the navigation terminal defense cyber security capability for a vehicle terminal, and fills a gap in the industry for the vehicle terminal information security test.
2021-03-29
Li, K., Ren, A., Ding, Y., Shi, Y., Wang, X..  2020.  Research on Decentralized Identity and Access Management Model Based on the OIDC Protocol. 2020 International Conference on E-Commerce and Internet Technology (ECIT). :252—255.

In the increasingly diverse information age, various kinds of personal information security problems continue to break out. According to the idea of combination of identity authentication and encryption services, this paper proposes a personal identity access management model based on the OIDC protocol. The model will integrate the existing personal security information and build a set of decentralized identity authentication and access management application cluster. The advantage of this model is to issue a set of authentication rules, so that all users can complete the authentication of identity access of all application systems in the same environment at a lower cost, and can well compatible and expand more categories of identity information. Therefore, this method not only reduces the number of user accounts, but also provides a unified and reliable authentication service for each application system.