Biblio
We present a gradient-based attack against SVM-based forensic techniques relying on high-dimensional SPAM features. As opposed to prior work, the attack works directly in the pixel domain even if the relationship between pixel values and SPAM features can not be inverted. The proposed method relies on the estimation of the gradient of the SVM output with respect to pixel values, however it departs from gradient descent methodology due to the necessity of preserving the integer nature of pixels and to reduce the effect of the attack on image quality. A fast algorithm to estimate the gradient is also introduced to reduce the complexity of the attack. We tested the proposed attack against SVM detection of histogram stretching, adaptive histogram equalization and median filtering. In all cases the attack succeeded in inducing a decision error with a very limited distortion, the PSNR between the original and the attacked images ranging from 50 to 70 dBs. The attack is also effective in the case of attacks with Limited Knowledge (LK) when the SVM used by the attacker is trained on a different dataset with respect to that used by the analyst.
The emerging Internet of Things (IoT) applications that leverage ubiquitous connectivity and big data are facilitating the realization of smart everything initiatives. IoT-enabled infrastructures have naturally a multi-layer system architecture with an overlaid or underlaid device network and its coexisting infrastructure network. The connectivity between different components in these two heterogeneous networks plays an important role in delivering real-time information and ensuring a high-level situational awareness. However, IoT- enabled infrastructures face cyber threats due to the wireless nature of communications. Therefore, maintaining the network connectivity in the presence of adversaries is a critical task for the infrastructure network operators. In this paper, we establish a three-player three-stage game-theoretic framework including two network operators and one attacker to capture the secure design of multi- layer infrastructure networks by allocating limited resources. We use subgame perfect Nash equilibrium (SPE) to characterize the strategies of players with sequential moves. In addition, we assess the efficiency of the equilibrium network by comparing with its team optimal solution counterparts in which two network operators can coordinate. We further design a scalable algorithm to guide the construction of the equilibrium IoT-enabled infrastructure networks. Finally, we use case studies on the emerging paradigm of Internet of Battlefield Things (IoBT) to corroborate the obtained results.
The complexity, multiplicity, and impact of cyber-attacks have been increasing at an alarming rate despite the significant research and development investment in cyber security products and tools. The current techniques to detect and protect cyber infrastructures from these smart and sophisticated attacks are mainly characterized as being ad hoc, manual intensive, and too slow. We present in this paper AIM-PSC that is developed jointly by researchers at AVIRTEK and The University of Arizona Center for Cloud and Autonomic Computing that is inspired by biological systems, which can efficiently handle complexity, dynamism and uncertainty. In AIM-PSC system, an online monitoring and multi-level analysis are used to analyze the anomalous behaviors of networks, software systems and applications. By combining the results of different types of analysis using a statistical decision fusion approach we can accurately detect any types of cyber-attacks with high detection and low false alarm rates and proactively respond with corrective actions to mitigate their impacts and stop their propagation.
Many attacks target vulnerabilities of home IoT devices, such as bugs in outdated software and weak passwords. The home network is at a vantage point for deploying security appliances to deal with such IoT attacks. We propose a comprehensive home network defense, Pot2DPI, and use it to raise an attacker's uncertainty about devices and enable the home network to monitor traffic, detect anomalies, and filter malicious packets. The security offered by Pot2DPI comes from a synthesis of practical techniques: honeypot, deep packet inspection (DPI), and a realization of moving target defense (MTD) in port forwarding. In particular, Pot2DPI has a chain of honeypot and DPI that collects suspicious packet traces, acquires attack signatures, and installs filtering rules at a home router timely. Meanwhile, Pot2DPI shuffles the mapping of ports between the router and the devices connected to it, making a targeted attack difficult and defense more effective. Pot2DPI is our first step towards securing a smart home.
Malware analysis relies heavily on the use of virtual machines (VMs) for functionality and safety. There are subtle differences in operation between virtual and physical machines. Contemporary malware checks for these differences and changes its behavior when it detects a VM presence. These anti-VM techniques hinder malware analysis. Existing research approaches to uncover differences between VMs and physical machines use randomized testing, and thus cannot guarantee completeness. In this article, we propose a detect-and-hide approach, which systematically addresses anti-VM techniques in malware. First, we propose cardinal pill testing—a modification of red pill testing that aims to enumerate the differences between a given VM and a physical machine through carefully designed tests. Cardinal pill testing finds five times more pills by running 15 times fewer tests than red pill testing. We examine the causes of pills and find that, while the majority of them stem from the failure of VMs to follow CPU specifications, a small number stem from under-specification of certain instructions by the Intel manual. This leads to divergent implementations in different CPU and VM architectures. Cardinal pill testing successfully enumerates the differences that stem from the first cause. Finally, we propose VM Cloak—a WinDbg plug-in which hides the presence of VMs from malware. VM Cloak monitors each execute malware command, detects potential pills, and at runtime modifies the command’s outcomes to match those that a physical machine would generate. We implemented VM Cloak and verified that it successfully hides VM presence from malware.
Volumetric DDoS attacks continue to inflict serious damage. Many proposed defenses for mitigating such attacks assume that a monitoring system has already detected the attack. However, many proposed DDoS monitoring systems do not focus on efficiently analyzing high volume network traffic to provide important characterizations of the attack in real-time to downstream traffic filtering systems. We propose a scalable real-time framework for an effective volumetric DDoS monitoring system that leverages modern big data technologies for streaming analytics of high volume network traffic to accurately detect and characterize attacks.
The increasing growth of cybercrimes targeting mobile devices urges an efficient malware analysis platform. With the emergence of evasive malware, which is capable of detecting that it is being analyzed in virtualized environments, bare-metal analysis has become the definitive resort. Existing works mainly focus on extracting the malicious behaviors exposed during bare-metal analysis. However, after malware analysis, it is equally important to quickly restore the system to a clean state to examine the next sample. Unfortunately, state-of-the-art solutions on mobile platforms can only restore the disk, and require a time-consuming system reboot. In addition, all of the existing works require some in-guest components to assist the restoration. Therefore, a kernel-level malware is still able to detect the presence of the in-guest components. We propose Bolt, a transparent restoration mechanism for bare-metal analysis on mobile platform without rebooting. Bolt achieves a reboot-less restoration by simultaneously making a snapshot for both the physical memory and the disk. Memory snapshot is enabled by an isolated operating system (BoltOS) in the ARM TrustZone secure world, and disk snapshot is accomplished by a piece of customized firmware (BoltFTL) for flash-based block devices. Because both the BoltOS and the BoltFTL are isolated from the guest system, even kernel-level malware cannot interfere with the restoration. More importantly, Bolt does not require any modifications into the guest system. As such, Bolt is the first that simultaneously achieves efficiency, isolation, and stealthiness to recover from infection due to malware execution. We have implemented a Bolt prototype working with the Android OS. Experimental results show that Bolt can restore the guest system to a clean state in only 2.80 seconds.
Cryptanalysis (the study of methods to read encrypted information without knowledge of the encryption key) has traditionally been separated into mathematical analysis of weaknesses in cryptographic algorithms, on the one hand, and side-channel attacks which aim to exploit weaknesses in the implementation of encryption and decryption algorithms. Mathematical analysis generally makes assumptions about the algorithm with the aim of reconstructing the key relating plain text to cipher text through brute-force methods. Complexity issues tend to dominate the systematic search for keys. To date, there has been very little research on a third cryptanalysis method: learning the key through convergence based on associations between plain text and cipher text. Recent advances in deep learning using multi-layered artificial neural networks (ANNs) provide an opportunity to reassess the role of deep learning architectures in next generation cryptanalysis methods based on neurocryptography (NC). In this paper, we explore the capability of deep ANNs to decrypt encrypted messages with minimum knowledge of the algorithm. From the experimental results, it can be concluded that DNNs can encrypt and decrypt to levels of accuracy that are not 100% because of the stochastic aspects of ANNs. This aspect may however be useful if communication is under cryptanalysis attack, since the attacker will not know for certain that key K used for encryption and decryption has been found. Also, uncertainty concerning the architecture used for encryption and decryption adds another layer of uncertainty that has no counterpart in traditional cryptanalysis.
Cellular Automata based computing paradigm is an efficient platform for modeling complicated computational problems. This can be used for various applications in the field of Cryptography. In this paper, it is used for generating a DNA cryptography based encryption algorithm. The encoded message in binary format is encrypted to cipher colors with the help of a simple algorithm based on the principles of DNA cryptography and cellular automata. The message will be in compressed form using XOR operator. Since cellular automata and DNA cryptographic principles are exploited, high level of parallelism, reversibility, uniformity etc. can be achieved.
The data accessibility anytime and anywhere is nowadays the key feature for information technology enabled by the ubiquitous network system for huge applications. However, security and privacy are perceived as primary obstacles to its wide adoption when it is applied to the end user application. When sharing sensitive information, personal s' data protection is the paramount requirement for the security and privacy to ensure the trustworthiness of the service provider. To this end, this paper proposes communication security protocol to achieve data protection when a user is sending his sensitive data to the network through gateway. We design a cipher content and key exchange computation process. Finally, the performance analysis of the proposed scheme ensure the honesty of the gateway service provider, since the user has the ability to control who has access to his data by issuing a cryptographic access credential to data users.
Entity authentication is one of the fundamental information security properties for secure transactions and communications. The combination of biometrics with cryptography is an emerging topic for authentication protocol design. Among the existing biometrics (e.g., fingerprint, face, iris, voice, heart), the heart-signal contains liveness property of biometric samples. In this paper, a remote entity authentication protocol has been proposed based on the randomness of heart biometrics combined with chaos cryptography. To this end, initial keys are generated for chaotic logistic maps based on the heart-signal. The authentication parameters are generated from the initial keys that can be used for claimants and verifiers to authenticate and verify each other, respectively. In this proposed technique, as each session of communication is different from others, therefore many session-oriented attacks are prevented. Experiments have been conducted on sample heart-signal for remote authentication. The results show that the randomness property of the heart-signal can help to implement one of the famous secure encryption, namely one-time pad encryption.
Centrality measures have perpetually been helpful to find the foremost central or most powerful node within the network. There are numerous strategies to compute centrality of a node however in social networks betweenness centrality is the most widely used approach to bifurcate communities within the network, to find out the susceptibility within the complex networks and to generate the scale free networks whose degree distribution follows the power law. In this paper, we've computed betweenness centrality by identifying communities lying within the network. Our algorithm efficiently updates the centrality of the nodes whenever any edge or vertex addition or deletion takes place within the dynamic network by modifying solely a subset of vertices. For the vertex addition, Incremental Algorithm has been used in which Streaming graphs has also been considered. Brandes approach is the most widely used approach for finding out the betweenness centrality however it's still expensive for growing networks since it takes O(mn+n2logn) amount of time and O(n+m) space however our approach efficiently updates the centrality of the nodes by taking O(textbarStextbarn+textbarStextbarnlogn) amount of time where textbarStextbar is the subset of the vertices,m is the number of edges, n is the number of vertices and textbarStextbar≤n holds true.
This article derives trade-offs between three basic costs of a parallel algorithm: synchronization, data movement, and computational cost. These trade-offs are lower bounds on the execution time of the algorithm that are independent of the number of processors but dependent on the problem size. Therefore, they provide lower bounds on the execution time of any parallel schedule of an algorithm computed by a system composed of any number of homogeneous processors, each with associated computational, communication, and synchronization costs. We employ a theoretical model that measures the amount of work and data movement as a maximum over that incurred along any execution path during the parallel computation. By considering this metric rather than the total communication volume over the whole machine, we obtain new insights into the characteristics of parallel schedules for algorithms with nontrivial dependency structures. We also present reductions from BSP and LogGP algorithms to our execution model, extending our lower bounds to these two models of parallel computation. We first develop our results for general dependency graphs and hypergraphs based on their expansion properties, and then we apply the theorem to a number of specific algorithms in numerical linear algebra, namely triangular substitution, Cholesky factorization, and stencil computations. We represent some of these algorithms as families of dependency graphs. We derive their communication lower bounds by studying the communication requirements of the hypergraph structures shared by these dependency graphs. In addition to these lower bounds, we introduce a new communication-efficient parallelization for stencil computation algorithms, which is motivated by results of our lower bound analysis and the properties of previously existing parallelizations of the algorithms.
The performance, dependability, and security of cloud service systems are vital for the ongoing operation, control, and support. Thus, controlled improvement in service requires a comprehensive analysis and systematic identification of the fundamental underlying constituents of cloud using a rigorous discipline. In this paper, we introduce a framework which helps identifying areas for potential cloud service enhancements. A cloud service cannot be completed if there is a failure in any of its underlying resources. In addition, resources are kept offline for scheduled maintenance. We use redundant resources to mitigate the impact of failures/maintenance for ensuring performance and dependability; which helps enhancing security as well. For example, at least 4 replicas are required to defend the intrusion of a single instance or a single malicious attack/fault as defined by Byzantine Fault Tolerance (BFT). Data centers with high performance, dependability, and security are outsourced to the cloud computing environment with greater flexibility of cost of owing the computing infrastructure. In this paper, we analyze the effectiveness of redundant resource usage in terms of dependability metric and cost of service deployment based on the priority of service requests. The trade-off among dependability, cost, and security under different redundancy schemes are characterized through the comprehensive analytical models.
Tactical networks are generally simple ad-hoc networks in design, however, this simple design often gets complicated, when heterogeneous wireless technologies have to work together to enable seamless multi-hop communications across multiple sessions. In recent years, there has been some significant advances in computational, radio, localization, and networking te, and session's rate i.e., aggregate capacity averaged over a 4-time-slot frame)chnologies, which motivate a clean slate design of the control plane for multi-hop tactical wireless networks. In this paper, we develop a global network optimization framework, which characterizes the control plane for multi-hop wireless tactical networks. This framework abstracts the underlying complexity of tactical wireless networks and orchestrates the the control plane functions. Specifically, we develop a cross-layer optimization framework, which characterizes the interaction between the physical, link, and network layers. By applying the framework to a throughput maximization problem, we show how the proposed framework can be utilized to solve a broad range of wireless multi-hop tactical networking problems.
The world is becoming an immense critical information infrastructure, with the fast and increasing entanglement of utilities, telecommunications, Internet, cloud, and the emerging IoT tissue. This may create enormous opportunities, but also brings about similarly extreme security and dependability risks. We predict an increase in very sophisticated targeted attacks, or advanced persistent threats (APT), and claim that this calls for expanding the frontier of security and dependability methods and techniques used in our current CII. Extreme threats require extreme defenses: we propose resilience as a unifying paradigm to endow systems with the capability of dynamically and automatically handling extreme adversary power, and sustaining perpetual and unattended operation. In this position paper, we present this vision and describe our methodology, as well as the assurance arguments we make for the ultra-resilient components and protocols they enable, illustrated with case studies in progress.
In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.
Interchange of information through cell phones, Tabs and PDAs (Personal Digital Assistant) is the new trend in the era of digitization. In day-to-day activities, sensitive information through mobile phones is exchanged among the users. This sensitive information can be in the form of text messages, images, location, etc. The research on Android mobile applications was done at the MIT, and found that applications are leaking enormous amount of information to the third party servers. 73 percent of 55 Android applications were detected to leak personal information of the users [8]. Transmission of files securely on Android is a big issue. Therefore it is important to shield the privacy of user data on Android operating system. The main motive of this paper is to protect the privacy of data on Android Platform by allowing transmission of textual data, location, pictures in encrypted format. By doing so, we achieved intimacy and integrity of data.
Social media plays an integral part in individual's everyday lives as well as for companies. Social media brings numerous benefits in people's lives such as to keep in touch with close ones and specially with relatives who are overseas, to make new friends, buy products, share information and much more. Unfortunately, several threats also accompany the countless advantages of social media. The rapid growth of the online social networking sites provides more scope for criminals and cyber-criminals to carry out their illegal activities. Hackers have found different ways of exploiting these platform for their malicious gains. This research englobes some of the common threats on social media such as spam, malware, Trojan horse, cross-site scripting, industry espionage, cyber-bullying, cyber-stalking, social engineering attacks. The main purpose of the study to elaborates on phishing, malware and click-jacking attacks. The main purpose of the research, there is no particular research available on the forensic investigation for Facebook. There is no particular forensic investigation methodology and forensic tools available which can follow on the Facebook. There are several tools available to extract digital data but it's not properly tested for Facebook. Forensics investigation tool is used to extract evidence to determine what, when, where, who is responsible. This information is required to ensure that the sufficient evidence to take legal action against criminals.
In the minimum Multicut problem, the input is an edge-weighted supply graph G = (V, E) and a demand graph H = (V, F). Either G and H are directed (Dir-MulC) or both are undirected (Undir-MulC). The goal is to remove a minimum weight set of supply edges E' $\subseteq$ E such that in G - E' there is no path from s to t for any demand edge (s, t) $ın$ F. Undir-MulC admits O(log k)-approximation where k is the number of edges in H while the best known approximation for Dir-MulC is min\k, Õ(textbarVtextbar11/23)\. These approximations are obtained by proving corresponding results on the multicommodity flow-cut gap. In this paper we consider the role that the structure of the demand graph plays in determining the approximability of Multicut. We obtain several new positive and negative results. In undirected graphs our main result is a 2-approximation in nO(t) time when the demand graph excludes an induced matching of size t. This gives a constant factor approximation for a specific demand graph that motivated this work, and is based on a reduction to uniform metric labeling and not via the flow-cut gap. In contrast to the positive result for undirected graphs, we prove that in directed graphs such approximation algorithms can not exist. We prove that, assuming the Unique Games Conjecture (UGC), that for a large class of fixed demand graphs Dir-MulC cannot be approximated to a factor better than the worst-case flow-cut gap. As a consequence we prove that for any fixed k, assuming UGC, Dir-MulC with k demand pairs is hard to approximate to within a factor better than k. On the positive side, we obtain a k approximation when the demand graph excludes certain graphs as an induced subgraph. This generalizes the known 2 approximation for directed Multiway Cut to a larger class of demand graphs.
Malware damages computers and the threat is a serious problem. Malware can be detected by pattern matching method or dynamic heuristic method. However, it is difficult to detect all new malware subspecies perfectly by existing methods. In this paper, we propose a new method which automatically detects new malware subspecies by static analysis of execution files and machine learning. The method can distinguish malware from benignware and it can also classify malware subspecies into malware families. We combine static analysis of execution files with machine learning classifier and natural language processing by machine learning. Information of DLL Import, assembly code and hexdump are acquired by static analysis of execution files of malware and benignware to create feature vectors. Paragraph vectors of information by static analysis of execution files are created by machine learning of PV-DBOW model for natural language processing. Support vector machine and classifier of k-nearest neighbor algorithm are used in our method, and the classifier learns paragraph vectors of information by static analysis. Unknown execution files are classified into malware or benignware by pre-learned SVM. Moreover, malware subspecies are also classified into malware families by pre-learned k-nearest. We evaluate the accuracy of the classification by experiments. We think that new malware subspecies can be effectively detected by our method without existing methods for malware analysis such as generic method and dynamic heuristic method.
Cooperation of software and hardware with hybrid architectures, such as Xilinx Zynq SoC combining ARM CPU and FPGA fabric, is a high-performance and low-power platform for accelerating RSA Algorithm. This paper adopts the none-subtraction Montgomery algorithm and the Chinese Remainder Theorem (CRT) to implement high-speed RSA processors, and deploys a 48-node cluster infrastructure based on Zynq SoC to achieve extremely high scalability and throughput of RSA computing. In this design, we use the ARM to implement node-to-node communication with the Message Passing Interface (MPI) while use the FPGA to handle complex calculation. Finally, the experimental results show that the overall performance is linear with the number of nodes. And the cluster achieves 6× 9× speedup against a multi-core desktop (Intel i7-3770) and comparable performance to a many-core server (288-core). In addition, we gain up to 2.5× energy efficiency compared to these two traditional platforms.
This paper presents a novel sensor parameter fault diagnosis method for generally multiple-input multiple-output (MIMO) affine nonlinear systems based on adaptive observer. Firstly, the affine nonlinear systems are transformed into the particular systems via diffeomorphic transformation using Lie derivative. Then, based on the techniques of high-gain observer and adaptive estimation, an adaptive observer structure is designed with simple method for jointly estimating the states and the unknown parameters in the output equation of the nonlinear systems. And an algorithm of the fault estimation is derived. The global exponential convergence of the proposed observer is proved succinctly. Also the proposed method can be applied to the fault diagnosis of generally affine nonlinear systems directly by the reversibility of aforementioned coordinate transformation. Finally, a numerical example is presented to illustrate the efficiency of the proposed fault diagnosis scheme.
Root cause analysis (RCA) is a common and recurring task performed by operators of cellular networks. It is done mainly to keep customers satisfied with the quality of offered services and to maximize return on investment (ROI) by minimizing and where possible eliminating the root causes of faults in cellular networks. Currently, the actual detection and diagnosis of faults or potential faults is still a manual and slow process often carried out by network experts who manually analyze and correlate various pieces of network data such as, alarms, call traces, configuration management (CM) and key performance indicator (KPI) data in order to come up with the most probable root cause of a given network fault. In this paper, we propose an automated fault detection and diagnosis solution called adaptive root cause analysis (ARCA). The solution uses measurements and other network data together with Bayesian network theory to perform automated evidence based RCA. Compared to the current common practice, our solution is faster due to automation of the entire RCA process. The solution is also cheaper because it needs fewer or no personnel in order to operate and it improves efficiency through domain knowledge reuse during adaptive learning. As it uses a probabilistic Bayesian classifier, it can work with incomplete data and it can handle large datasets with complex probability combinations. Experimental results from stratified synthesized data affirmatively validate the feasibility of using such a solution as a key part of self-healing (SH) especially in emerging self-organizing network (SON) based solutions in LTE Advanced (LTE-A) and 5G.