Biblio

Filters: Keyword is parallel processing  [Clear All Filters]
2020-12-28
Marichamy, V. S., Natarajan, V..  2020.  A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :482—486.

Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.

2020-02-10
Taneja, Shubbhi, Zhou, Yi, Chavan, Ajit, Qin, Xiao.  2019.  Improving Energy Efficiency of Hadoop Clusters using Approximate Computing. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :206–211.
There is an ongoing search for finding energy-efficient solutions in multi-core computing platforms. Approximate computing is one such solution leveraging the forgiving nature of applications to improve the energy efficiency at different layers of the computing platform ranging from applications to hardware. We are interested in understanding the benefits of approximate computing in the realm of Apache Hadoop and its applications. A few mechanisms for introducing approximation in programming models include sampling input data, skipping selective computations, relaxing synchronization, and user-defined quality-levels. We believe that it is straightforward to apply the aforementioned mechanisms to conserve energy in Hadoop clusters as well. The emerging trend of approximate computing motivates us to systematically investigate thermal profiling of approximate computing strategies in this research. In particular, we design a thermal-aware approximate computing framework called tHadoop2, which is an extension of tHadoop proposed by Chavan et al. We investigated the thermal behavior of a MapReduce application called Pi running on Hadoop clusters by varying two input parameters - number of maps and number of sampling points per map. Our profiling results show that Pi exhibits inherent resilience in terms of the number of precision digits present in its value.
2020-07-27
Tun, May Thet, Nyaung, Dim En, Phyu, Myat Pwint.  2019.  Performance Evaluation of Intrusion Detection Streaming Transactions Using Apache Kafka and Spark Streaming. 2019 International Conference on Advanced Information Technologies (ICAIT). :25–30.
In the information era, the size of network traffic is complex because of massive Internet-based services and rapid amounts of data. The more network traffic has enhanced, the more cyberattacks have dramatically increased. Therefore, cybersecurity intrusion detection has been a challenge in the current research area in recent years. The Intrusion detection system requires high-level protection and detects modern and complex attacks with more accuracy. Nowadays, big data analytics is the main key to solve marketing, security and privacy in an extremely competitive financial market and government. If a huge amount of stream data flows within a short period time, it is difficult to analyze real-time decision making. Performance analysis is extremely important for administrators and developers to avoid bottlenecks. The paper aims to reduce time-consuming by using Apache Kafka and Spark Streaming. Experiments on the UNSWNB-15 dataset indicate that the integration of Apache Kafka and Spark Streaming can perform better in terms of processing time and fault-tolerance on the huge amount of data. According to the results, the fault tolerance can be provided by the multiple brokers of Kafka and parallel recovery of Spark Streaming. And then, the multiple partitions of Apache Kafka increase the processing time in the integration of Apache Kafka and Spark Streaming.
2020-03-16
Udod, Kyryll, Kushnarenko, Volodymyr, Wesner, Stefan, Svjatnyj, Volodymyr.  2019.  Preservation System for Scientific Experiments in High Performance Computing: Challenges and Proposed Concept. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 2:809–813.
Continuously growing amount of research experiments using High Performance Computing (HPC) leads to the questions of research data management and in particular how to preserve a scientific experiment including all related data for long term for its future reproduction. This paper covers some challenges and possible solutions related to the preservation of scientific experiments on HPC systems and represents a concept of the preservation system for HPC computations. Storage of the experiment itself with some related data is not only enough for its future reproduction, especially in the long term. For that case preservation of the whole experiment's environment (operating system, used libraries, environment variables, input data, etc.) via containerization technology (e.g. using Docker, Singularity) is proposed. This approach allows to preserve the entire environment, but is not always possible on every HPC system because of security issues. And it also leaves a question, how to deal with commercial software that was used within the experiment. As a possible solution we propose to run a preservation process outside of the computing system on the web-server and to replace all commercial software inside the created experiment's image with open source analogues that should allow future reproduction of the experiment without any legal issues. The prototype of such a system was developed, the paper provides the scheme of the system, its main features and describes the first experimental results and further research steps.
2020-06-08
Al-Odat, Zeyad, Abbas, Assad, Khan, Samee U..  2019.  Randomness Analyses of the Secure Hash Algorithms, SHA-1, SHA-2 and Modified SHA. 2019 International Conference on Frontiers of Information Technology (FIT). :316–3165.
This paper introduces a security analysis scheme for the most famous secure hash algorithms SHA-1 and SHA-2. Both algorithms follow Merkle Damgård structure to compute the corresponding hash function. The randomness of the output hash reflects the strength and security of the generated hash. Therefore, the randomness of the internal rounds of the SHA-1 and SHA-2 hash functions is analyzed using Bayesian and odd ratio tests. Moreover, a proper replacement for both algorithms is proposed, which produces a hash output with more randomness level. The experiments were conducted using a high performance computing testbed and CUDA parallel computing platform.
2020-02-10
Prout, Andrew, Arcand, William, Bestor, David, Bergeron, Bill, Byun, Chansup, Gadepally, Vijay, Houle, Michael, Hubbell, Matthew, Jones, Michael, Klein, Anna et al..  2019.  Securing HPC using Federated Authentication. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.
Federated authentication can drastically reduce the overhead of basic account maintenance while simultaneously improving overall system security. Integrating with the user's more frequently used account at their primary organization both provides a better experience to the end user and makes account compromise or changes in affiliation more likely to be noticed and acted upon. Additionally, with many organizations transitioning to multi-factor authentication for all account access, the ability to leverage external federated identity management systems provides the benefit of their efforts without the additional overhead of separately implementing a distinct multi-factor authentication process. This paper describes our experiences and the lessons we learned by enabling federated authentication with the U.S. Government PKI and In Common Federation, scaling it up to the user base of a production HPC system, and the motivations behind those choices. We have received only positive feedback from our users.
2020-02-17
Wang, Chen, Liu, Jian, Guo, Xiaonan, Wang, Yan, Chen, Yingying.  2019.  WristSpy: Snooping Passcodes in Mobile Payment Using Wrist-worn Wearables. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :2071–2079.
Mobile payment has drawn considerable attention due to its convenience of paying via personal mobile devices at anytime and anywhere, and passcodes (i.e., PINs or patterns) are the first choice of most consumers to authorize the payment. This paper demonstrates a serious security breach and aims to raise the awareness of the public that the passcodes for authorizing transactions in mobile payments can be leaked by exploiting the embedded sensors in wearable devices (e.g., smartwatches). We present a passcode inference system, WristSpy, which examines to what extent the user's PIN/pattern during the mobile payment could be revealed from a single wrist-worn wearable device under different passcode input scenarios involving either two hands or a single hand. In particular, WristSpy has the capability to accurately reconstruct fine-grained hand movement trajectories and infer PINs/patterns when mobile and wearable devices are on two hands through building a Euclidean distance-based model and developing a training-free parallel PIN/pattern inference algorithm. When both devices are on the same single hand, a highly challenging case, WristSpy extracts multi-dimensional features by capturing the dynamics of minute hand vibrations and performs machine-learning based classification to identify PIN entries. Extensive experiments with 15 volunteers and 1600 passcode inputs demonstrate that an adversary is able to recover a user's PIN/pattern with up to 92% success rate within 5 tries under various input scenarios.
2020-02-18
Talluri, Sacheendra, Iosup, Alexandru.  2019.  Efficient Estimation of Read Density When Caching for Big Data Processing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :502–507.

Big data processing systems are becoming increasingly more present in cloud workloads. Consequently, they are starting to incorporate more sophisticated mechanisms from traditional database and distributed systems. We focus in this work on the use of caching policies, which for big data raise important new challenges. Not only they must respond to new variants of the trade-off between hit rate, response time, and the space consumed by the cache, but they must do so at possibly higher volume and velocity than web and database workloads. Previous caching policies have not been tested experimentally with big data workloads. We address these challenges in this work. We propose the Read Density family of policies, which is a principled approach to quantify the utility of cached objects through a family of utility functions that depend on the frequency of reads of an object. We further design the Approximate Histogram, which is a policy-based technique based on an array of counters. This technique promises to achieve runtime-space efficient computation of the metric required by the cache policy. We evaluate through trace-based simulation the caching policies from the Read Density family, and compare them with over ten state-of-the-art alternatives. We use two workload traces representative for big data processing, collected from commercial Spark and MapReduce deployments. While we achieve comparable performance to the state-of-art with less parameters, meaningful performance improvement for big data workloads remain elusive.

2019-06-28
Hazari, S. S., Mahmoud, Q. H..  2019.  A Parallel Proof of Work to Improve Transaction Speed and Scalability in Blockchain Systems. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0916-0921.

A blockchain is a distributed ledger forming a distributed consensus on a history of transactions, and is the underlying technology for the Bitcoin cryptocurrency. However, its applications are far beyond the financial sector. The transaction verification process for cryptocurrencies is much slower than traditional digital transaction systems. One approach to increase transaction speed and scalability is to identify a solution that offers faster Proof of Work. In this paper, we propose a method for accelerating the process of Proof of Work based on parallel mining rather than solo mining. The goal is to ensure that no more than two or more miners put the same effort into solving a specific block. The proposed method includes a process for selection of a manager, distribution of work and a reward system. This method has been implemented in a test environment that contains all the characteristics needed to perform Proof of Work for Bitcoin and has been tested, using a variety of case scenarios, by varying the difficulty level and number of validators. Preliminary results show improvement in the scalability of Proof of Work up to 34% compared to the current system.

2020-03-27
Xu, Zheng, Abraham, Jacob.  2019.  Resilient Reorder Buffer Design for Network-on-Chip. 20th International Symposium on Quality Electronic Design (ISQED). :92–97.

Functionally safe control logic design without full duplication is difficult due to the complexity of random control logic. The Reorder buffer (ROB) is a control logic function commonly used in high performance computing systems. In this study, we focus on a safe ROB design used in an industry quality Network-on-Chip (NoC) Advanced eXtensible Interface (AXI) Network Interface (NI) block. We developed and applied area efficient safe design techniques including partial duplication, Error Detection Code (EDC) and invariance checking with formal proofs and showed that we can achieve a desired safe Diagnostic Coverage (DC) requirement with small area and power overheads and no performance degradation.

2019-10-28
Ocaña, Kary, Galheigo, Marcelo, Osthoff, Carla, Gadelha, Luiz, Gomes, Antônio Tadeu A., De Oliveira, Daniel, Porto, Fabio, Vasconcelos, Ana Tereza.  2019.  Towards a Science Gateway for Bioinformatics: Experiences in the Brazilian System of High Performance Computing. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :638–647.

Science gateways bring out the possibility of reproducible science as they are integrated into reusable techniques, data and workflow management systems, security mechanisms, and high performance computing (HPC). We introduce BioinfoPortal, a science gateway that integrates a suite of different bioinformatics applications using HPC and data management resources provided by the Brazilian National HPC System (SINAPAD). BioinfoPortal follows the Software as a Service (SaaS) model and the web server is freely available for academic use. The goal of this paper is to describe the science gateway and its usage, addressing challenges of designing a multiuser computational platform for parallel/distributed executions of large-scale bioinformatics applications using the Brazilian HPC resources. We also present a study of performance and scalability of some bioinformatics applications executed in the HPC environments and perform machine learning analyses for predicting features for the HPC allocation/usage that could better perform the bioinformatics applications via BioinfoPortal.

2020-03-04
Sadkhan, Sattar B., Yaseen, Basim S..  2019.  Hybrid Method to Implement a Parallel Search of the Cryptosystem Keys. 2019 International Conference on Advanced Science and Engineering (ICOASE). :204–207.

The current paper proposes a method to combine the theoretical concepts of the parallel processing created by the DNA computing and GA environments, with the effectiveness novel mechanism of the distinction and discover of the cryptosystem keys. Three-level contributions to the current work, the first is the adoption of a final key sequence mechanism by the principle of interconnected sequence parts, the second to exploit the principle of the parallel that provides GA in the search for the counter value of the sequences of the challenge to the mechanism of the discrimination, the third, the most important and broadening the breaking of the cipher, is the harmony of the principle of the parallelism that has found via the DNA computing to discover the basic encryption key. The proposed method constructs a combined set of files includes binary sequences produced from substitution of the guess attributes of the binary equations system of the cryptosystem, as well as generating files that include all the prospects of the DNA strands for all successive cipher characters, the way to process these files to be obtained from the first character file, where extract a key sequence of each sequence from mentioned file and processed with the binary sequences that mentioned the counter produced from GA. The aim of the paper is exploitation and implementation the theoretical principles of the parallelism that providing via biological environment with the new sequences recognition mechanism in the cryptanalysis.

2020-12-02
Gliksberg, J., Capra, A., Louvet, A., García, P. J., Sohier, D..  2019.  High-Quality Fault-Resiliency in Fat-Tree Networks (Extended Abstract). 2019 IEEE Symposium on High-Performance Interconnects (HOTI). :9—12.
Coupling regular topologies with optimized routing algorithms is key in pushing the performance of interconnection networks of HPC systems. In this paper we present Dmodc, a fast deterministic routing algorithm for Parallel Generalized Fat-Trees (PGFTs) which minimizes congestion risk even under massive topology degradation caused by equipment failure. It applies a modulo-based computation of forwarding tables among switches closer to the destination, using only knowledge of subtrees for pre-modulo division. Dmodc allows complete re-routing of topologies with tens of thousands of nodes in less than a second, which greatly helps centralized fabric management react to faults with high-quality routing tables and no impact to running applications in current and future very large-scale HPC clusters. We compare Dmodc against routing algorithms available in the InfiniBand control software (OpenSM) first for routing execution time to show feasibility at scale, and then for congestion risk under degradation to demonstrate robustness. The latter comparison is done using static analysis of routing tables under random permutation (RP), shift permutation (SP) and all-to-all (A2A) traffic patterns. Results for Dmodc show A2A and RP congestion risks similar under heavy degradation as the most stable algorithms compared, and near-optimal SP congestion risk up to 1% of random degradation.
2020-08-24
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
2020-06-08
Tang, Deyou, Zhang, Yazhuo, Zeng, Qingmiao.  2019.  Optimization of Hardware-oblivious and Hardware-conscious Hash-join Algorithms on KNL. 2019 4th International Conference on Cloud Computing and Internet of Things (CCIOT). :24–28.
Investigation of hash join algorithm on multi-core and many-core platforms showed that carefully tuned hash join implementations could outperform simple hash joins on most multi-core servers. However, hardware-oblivious hash join has shown competitive performance on many-core platforms. Knights Landing (KNL) has received attention in the field of parallel computing for its massively data-parallel nature and high memory bandwidth, but both hardware-oblivious and hardware-conscious hash join algorithms have not been systematically discussed and evaluated for KNL's characteristics (high bandwidth, cluster mode, etc.). In this paper, we present the design and implementation of the state-of-the-art hardware-oblivious and hardware-conscious hash joins that are tuned to exploit various KNL hardware characteristics. Using a thorough evaluation, we show that:1) Memory allocation strategies based on KNL's architecture are effective for both hardware-oblivious and hardware-conscious hash join algorithms; 2) In order to improve the efficiency of the hash join algorithms, hardware architecture features are still non-negligible factors.
2020-10-06
Drozd, Oleksandr, Kharchenko, Vyacheslav, Rucinski, Andrzej, Kochanski, Thaddeus, Garbos, Raymond, Maevsky, Dmitry.  2019.  Development of Models in Resilient Computing. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :1—6.

The article analyzes the concept of "Resilience" in relation to the development of computing. The strategy for reacting to perturbations in this process can be based either on "harsh Resistance" or "smarter Elasticity." Our "Models" are descriptive in defining the path of evolutionary development as structuring under the perturbations of the natural order and enable the analysis of the relationship among models, structures and factors of evolution. Among those, two features are critical: parallelism and "fuzziness", which to a large extent determine the rate of change of computing development, especially in critical applications. Both reversible and irreversible development processes related to elastic and resistant methods of problem solving are discussed. The sources of perturbations are located in vicinity of the resource boundaries, related to growing problem size with progress combined with the lack of computational "checkability" of resources i.e. data with inadequate models, methodologies and means. As a case study, the problem of hidden faults caused by the growth, the deficit of resources, and the checkability of digital circuits in critical applications is analyzed.

2020-03-16
Iuhasz, Gabriel, Petcu, Dana.  2019.  Perspectives on Anomaly and Event Detection in Exascale Systems. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :225–229.
The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data methods and technologies to allow the execution of scientific workloads which are not tractable at this present time. In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show how it can be used to handle failures during job execution.
2020-08-28
Yau, Yiu Chung, Khethavath, Praveen, Figueroa, Jose A..  2019.  Secure Pattern-Based Data Sensitivity Framework for Big Data in Healthcare. 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science Engineering (BCD). :65—70.
With the exponential growth in the usage of electronic medical records (EMR), the amount of data generated by the healthcare industry has too increased exponentially. These large amounts of data, known as “Big Data” is mostly unstructured. Special big data analytics methods are required to process the information and retrieve information which is meaningful. As patient information in hospitals and other healthcare facilities become increasingly electronic, Big Data technologies are needed now more than ever to manage and understand this data. In addition, this information tends to be quite sensitive and needs a highly secure environment. However, current security algorithms are hard to be implemented because it would take a huge amount of time and resources. Security protocols in Big data are also not adequate in protecting sensitive information in the healthcare. As a result, the healthcare data is both heterogeneous and insecure. As a solution we propose the Secure Pattern-Based Data Sensitivity Framework (PBDSF), that uses machine learning mechanisms to identify the common set of attributes of patient data, data frequency, various patterns of codes used to identify specific conditions to secure sensitive information. The framework uses Hadoop and is built on Hadoop Distributed File System (HDFS) as a basis for our clusters of machines to process Big Data, and perform tasks such as identifying sensitive information in a huge amount of data and encrypting data that are identified to be sensitive.
2020-10-30
Xu, Lai, Yu, Rongwei, Wang, Lina, Liu, Weijie.  2019.  Memway: in-memorywaylaying acceleration for practical rowhammer attacks against binaries. Tsinghua Science and Technology. 24:535—545.

The Rowhammer bug is a novel micro-architectural security threat, enabling powerful privilege-escalation attacks on various mainstream platforms. It works by actively flipping bits in Dynamic Random Access Memory (DRAM) cells with unprivileged instructions. In order to set up Rowhammer against binaries in the Linux page cache, the Waylaying algorithm has previously been proposed. The Waylaying method stealthily relocates binaries onto exploitable physical addresses without exhausting system memory. However, the proof-of-concept Waylaying algorithm can be easily detected during page cache eviction because of its high disk I/O overhead and long running time. This paper proposes the more advanced Memway algorithm, which improves on Waylaying in terms of both I/O overhead and speed. Running time and disk I/O overhead are reduced by 90% by utilizing Linux tmpfs and inmemory swapping to manage eviction files. Furthermore, by combining Memway with the unprivileged posix fadvise API, the binary relocation step is made 100 times faster. Equipped with our Memway+fadvise relocation scheme, we demonstrate practical Rowhammer attacks that take only 15-200 minutes to covertly relocate a victim binary, and less than 3 seconds to flip the target instruction bit.

2020-02-17
Ezick, James, Henretty, Tom, Baskaran, Muthu, Lethin, Richard, Feo, John, Tuan, Tai-Ching, Coley, Christopher, Leonard, Leslie, Agrawal, Rajeev, Parsons, Ben et al..  2019.  Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.

2020-05-15
Wang, Jihe, Zhang, Meng, Qiu, Meikang.  2018.  A Diffusional Schedule for Traffic Reducing on Network-on-Chip. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :206—210.
pubcrawl, Network on Chip Security, Scalability, resiliency, resilience, metrics, Tasks on NoC (Network-on-Chip) are less efficient because of long-distance data synchronization. An inefficient task schedule strategy can lead to a large number of remote data accessing that ruins the speedup of parallel execution of multiple tasks. Thus, we propose an energy efficient task schedule to reduce task traffic with a diffusional pattern. The task mapping algorithm can optimize traffic distribution by limit tasks into a small area to reduce NoC activities. Comparing to application-layer optimization, our task mapping can obtain 20% energy saving and 15% latency reduction on average.
2020-12-01
Garbo, A., Quer, S..  2018.  A Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices. IEEE Access. 6:52027—52046.
The Moving Picture Experts Group's Compact Descriptors for Visual Search (MPEG's CDVS) intends to standardize technologies in order to enable an interoperable, efficient, and cross-platform solution for internet-scale visual search applications and services. Among the key technologies within CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover, they are very time-consuming, as they need running times in the order of seconds when implemented on the central processing unit (CPU) of modern mobile devices. In this paper, to reduce computation times and maintain precision and accuracy, we re-design, for many-cores embedded graphical processor units (GPUs), all main local descriptor extraction pipeline phases of the MPEG's CDVS standard. To reach this goal, we introduce new techniques to adapt the standard algorithm to parallel processing. Furthermore, to reduce memory accesses and efficiently distribute the kernel workload, we use new approaches to store and retrieve CDVS information on proper GPU data structures. We present a complete experimental analysis on a large and standard test set. Our experiments show that our GPU-based approach is remarkably faster than the CPU-based reference implementation of the standard, and it maintains a comparable precision in terms of true and false positive rates.
2020-05-22
Ito, Toshitaka, Itotani, Yuri, Wakabayashi, Shin'ichi, Nagayama, Shinobu, Inagi, Masato.  2018.  A Nearest Neighbor Search Engine Using Distance-Based Hashing. 2018 International Conference on Field-Programmable Technology (FPT). :150—157.
This paper proposes an FPGA-based nearest neighbor search engine for high-dimensional data, in which nearest neighbor search is performed based on distance-based hashing. The proposed hardware search engine implements a nearest neighbor search algorithm based on an extension of flexible distance-based hashing (FDH, for short), which finds an exact solution with high probability. The proposed engine is a parallel processing and pipelined circuit so that search results can be obtained in a short execution time. Experimental results show the effectiveness and efficiency of the proposed engine.
2019-03-06
Fargo, F., Sury, S..  2018.  Autonomic Secure HPC Fabric Architecture. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-4.

Cloud computing is the major paradigm in today's IT world with the capabilities of security management, high performance, flexibility, scalability. Customers valuing these features can better benefit if they use a cloud environment built using HPC fabric architecture. However, security is still a major concern, not only on the software side but also on the hardware side. There are multiple studies showing that the malicious users can affect the regular customers through the hardware if they are co-located on the same physical system. Therefore, solving possible security concerns on the HPC fabric architecture will clearly make the fabric industries leader in this area. In this paper, we propose an autonomic HPC fabric architecture that leverages both resilient computing capabilities and adaptive anomaly analysis for further security.

2019-05-01
Konstantelos, I., Jamgotchian, G., Tindemans, S., Duchesne, P., Cole, S., Merckx, C., Strbac, G., Panciatici, P..  2018.  Implementation of a Massively Parallel Dynamic Security Assessment Platform for Large-Scale Grids. 2018 IEEE Power Energy Society General Meeting (PESGM). :1–1.

This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.