Biblio
We present a study examining the impact of physical and cognitive challenge on reported immersion for a mixed reality game called Beach Pong. Contrary to prior findings for desktop games, we find significantly higher reported immersion among players who engage physically, regardless of their actual game performance. Building a mental map of the real, virtual, and sensed world is a cognitive challenge for novices, and this appears to influence immersion: in our study, participants who actively attended to both physical and virtual game elements reported higher immersion levels than those who attended mainly or exclusively to virtual elements. Without an integrated mental map, in-game cognitive challenges were ignored or offloaded to motor response when possible in order to achieve the minimum required goals of the game. From our results we propose a model of immersion in mixed reality gaming that is useful for designers and researchers in this space.
A MANET is a collection of self-configured node connected with wireless links. Each node of a mobile ad hoc network acts as a router and finds out a suitable route to forward a packet from source to destination. This network is applicable in areas where establishment of infrastructure is not possible, such as in the military environment. Along with the military environment MANET is also used in civilian environment such as sports stadiums, meeting room. The routing functionality of each node is cause of many security threats on routing. In this paper addressed the problem of identifying and isolating wormhole attack that refuse to forward packets in wireless mobile ad hoc network. The impact of this attack has been shown to be detrimental to network performance, lowering the packet delivery ratio and dramatically increasing the end-to-end delay. Proposed work suggested the efficient and secure routing in MANET. Using this approach of buffer length and RTT calculation, routing overhead minimizes. This research is based on detection and prevention of wormhole attacks in AODV. The proposed protocol is simulated using NS-2 and its performance is compared with the standard AODV protocol. The statistical analysis shows that modified AODV protocol detects wormhole attack efficiently and provides secure and optimum path for routing.
Resource discovery in unstructured peer-to-peer networks causes a search query to be flooded throughout the network via random nodes, leading to security and privacy issues. The owner of the search query does not have control over the transmission of its query through the network. Although algorithms have been proposed for policy-compliant query or data routing in a network, these algorithms mainly deal with authentic route computation and do not provide mechanisms to actually verify the network paths taken by the query. In this work, we propose an approach to deal with the problem of verifying network paths taken by a search query during resource discovery, and detection of malicious forwarding of search query. Our approach aims at being secure and yet very scalable, even in the presence of huge number of nodes in the network.
Embedded virtualization has emerged as a valuable way to reduce costs, improve software quality, and decrease design time. Additionally, virtualization can enforce the overall system's security from several perspectives. One is security due to separation, where the hypervisor ensures that one domain does not compromise the execution of other domains. At the same time, the advances in the development of IoT applications opened discussions about the security flaws that were introduced by IoT devices. In a few years, billions of these devices will be connected to the cloud exchanging information. This is an opportunity for hackers to exploit their vulnerabilities, endangering applications connected to such devices. At this point, it is inevitable to consider virtualization as a possible approach for IoT security. In this paper we discuss how embedded virtualization could take place on IoT devices as a sound solution for security.
A two-factor authenticated key-agreement scheme for session initiation protocol emerged as a best remedy to overcome the ascribed limitations of the password-based authentication scheme. Recently, Lu et al. proposed an anonymous two-factor authenticated key-agreement scheme for SIP using elliptic curve cryptography. They claimed that their scheme is secure against attacks and achieves user anonymity. Conversely, this paper's keen analysis points out several severe security weaknesses of the Lu et al.'s scheme. In addition, this paper puts forward an enhanced anonymous two-factor mutual authenticated key-agreement scheme for session initiation protocol using elliptic curve cryptography. The security analysis and performance analysis sections demonstrates that the proposed scheme is more robust and efficient than Lu et al.'s scheme.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.
Fabrication process introduces some inherent variability to the attributes of transistors (in particular length, widths, oxide thickness). As a result, every chip is physically unique. Physical uniqueness of microelectronics components can be used for multiple security applications. Physically Unclonable Functions (PUFs) are built to extract the physical uniqueness of microelectronics components and make it usable for secure applications. However, the microelectronics components used by PUFs designs suffer from external, environmental variations that impact the PUF behavior. Variations of temperature gradients during manufacturing can bias the PUF responses. Variations of temperature or thermal noise during PUF operation change the behavior of the circuit, and can introduce errors in PUF responses. Detailed knowledge of the behavior of PUFs operating over various environmental factors is needed to reliably extract and demonstrate uniqueness of the chips. In this work, we present a detailed and exhaustive analysis of the behavior of two PUF designs, a ring oscillator PUF and a timing path violation PUF. We have implemented both PUFs using FPGA fabricated by Xilinx, and analyzed their behavior while varying temperature and supply voltage. Our experiments quantify the robustness of each design, demonstrate their sensitivity to temperature and show the impact which supply voltage has on the uniqueness of the analyzed PUFs.
In this paper we discuss several improvements to the security and reliability of a classic Bluetooth network (piconet) that can arise from the fact of being able to transmit the same frame with two frequencies on each slot, instead of the actual standard, that uses only one frequency. Furthermore, we build upon this possibility and we show that piconet participants can explore many strategies to increase the security of their communications by confounding eavesdroppers, such as multiple hopping sequences, random selection of a hopping sequence on each transmission slot and variable frame encryption per hopping sequence. Finally, all this can be decided independently by any piconet participant without having to agree in real time on some type of service with other participants of the same piconet.
This paper explores fully integrated inductive voltage regulators (FIVR) as a technique to improve the side channel resistance of encryption engines. We propose security aware design modes for low passive FIVR to improve robustness of an encryption-engine against statistical power attacks in time and frequency domain. A Correlation Power Analysis is used to attack a 128-bit AES engine synthesized in 130nm CMOS. The original design requires \textasciitilde250 Measurements to Disclose (MTD) the 1st byte of key; but with security-aware FIVR, the CPA was unsuccessful even after 20,000 traces. We present a reversibility based threat model for the FIVR-based protection improvement and show the robustness of security aware FIVR against such threat.
Smartphones have fueled a shift in the way we communicate with each other via Instant Messaging. With the convergence of Internet and telephony, new Over-The-Top (OTT) messaging applications (e.g., WhatsApp, Viber, WeChat etc.) have emerged as an important means of communication for millions of users. These applications use phone numbers as the only means of authentication and are becoming an attractive medium for attackers to deliver spam and carry out more targeted attacks. The universal reach of telephony along with its past trusted nature makes phone numbers attractive identifiers for reaching potential attack targets. In this paper, we explore the feasibility, automation, and scalability of a variety of targeted attacks that can be carried out by abusing phone numbers. These attacks can be carried out on different channels viz. OTT messaging applications, voice, e-mail, or SMS. We demonstrate a novel system that takes a phone number as an input, leverages information from applications like Truecaller and Facebook about the victim and his / her social network, checks the presence of phone number's owner (victim) on the attack channel (OTT messaging applications, voice, e-mail, or SMS), and finally targets the victim on the chosen attack channel. As a proof of concept, we enumerated through a random pool of 1.16 million phone numbers and demonstrated that targeted attacks could be crafted against the owners of 255,873 phone numbers by exploiting cross-application features. Due to the significantly increased user engagement via new mediums of communication like OTT messaging applications and ease with which phone numbers allow collection of pertinent information, there is a clear need for better protection of applications that rely on phone numbers.
As the oil and gas industry's ultimate goal is to uncover efficient and economic ways to produce oil and gas, well optimization studies are crucially important for reservoir engineers. Although this task has a major impact on reservoir productivity, it has been challenging for reservoir engineers to perform since it involves time-consuming flow simulations to search a large solution space for an optimal well plan. Our work aims to provide engineers a) an analytical method to perform static connectivity analysis as a proxy for flow simulation, b) an application to support well optimization using our method and c) an immersive experience that benefits engineers and supports their needs and preferences when performing the design and assessment of well trajectories. For the latter purpose, we explore our tool with three immersive environments: a CAVE with a tracked gamepad; a HMD with a tracked gamepad; and a HMD with a Leap Motion controller. This paper describes our application and its techniques in each of the different immersive environments. This paper also describes our findings from an exploratory evaluation conducted with six reservoir engineers, which provided insight into our application, and allowed us to discuss the potential benefits of immersion for the oil and gas domain.
Life-cycle management of stateful VNF services is a complicated task, especially when automated resiliency and scaling should be handled in a secure manner, without service degradation. We present FlowSNAC, a resilient and scalable VNF service for user authentication and service deployment. FlowSNAC consists of both stateful and stateless components, some of that are SDN-based and others that are NFVs. We describe how it adapts to changing conditions by automatically updating resource allocations through a series of intermediate steps of traffic steering, resource allocation, and secure state transfer. We conclude by highlighting some of the lessons learned during implementation, and their wider consequences for the architecture of SDN/NFV management and orchestration systems.
This work is motivated by the rapid increase of the number of attacks in computer networks and software engineering. In this paper we study identity snowball attacks and formally prove the correctness of suggested solutions to this type of attack (solutions that are based on the graph reachability reduction) using a proof assistant. We propose a model of an attack graph that captures technical informations about the calculation of reachability of the graph. The model has been implemented with the proof assistant PVS 6.0 (Prototype Verification System). It makes it possible to prove algorithms of reachability reduction such as Sparsest\_cut.
In modern enterprises, incorrect or inconsistent security policies can lead to massive damage, e.g., through unintended data leakage. As policy authors have different skills and background knowledge, usable policy editors have to be tailored to the author's individual needs and to the corresponding application domain. However, the development of individual policy editors and the customization of existing ones is an effort consuming task. In this paper, we present a framework for generating tailored policy editors. In order to empower user-friendly and less error-prone specification of security policies, the framework supports multiple platforms, policy languages, and specification paradigms.
The latest advances in head-mounted displays (HMDs) for augmented reality (AR) and mixed reality (MR) have produced commercialized devices that are gradually accepted by the public. These HMDs are generally equipped with head tracking, which provides an excellent input to explore immersive visualization and interaction techniques for various AR/MR applications. This paper explores the head tracking function on the latest Microsoft HoloLens – where gaze is defined as the ray starting at the head location and points forward. We present a gaze-directed visualization approach to study ensembles of 2D oil spill simulations in mixed reality. Our approach allows users to place an ensemble as an image stack in a real environment and explore the ensemble with gaze tracking. The prototype system demonstrates the challenges and promising effects of gaze-based interaction in the state-of-the-art mixed reality.
Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.
Game theory is appropriate for studying cyber conflict because it allows for an intelligent and goal-driven adversary. Applications of game theory have led to a number of results regarding optimal attack and defense strategies. However, the overwhelming majority of applications explore overly simplistic games, often ones in which each participant's actions are visible to every other participant. These simplifications strip away the fundamental properties of real cyber conflicts: probabilistic alerting, hidden actions, unknown opponent capabilities. In this paper, we demonstrate that it is possible to analyze a more realistic game, one in which different resources have different weaknesses, players have different exploits, and moves occur in secrecy, but they can be detected. Certainly, more advanced and complex games are possible, but the game presented here is more realistic than any other game we know of in the scientific literature. While optimal strategies can be found for simpler games using calculus, case-by-case analysis, or, for stochastic games, Q-learning, our more complex game is more naturally analyzed using the same methods used to study other complex games, such as checkers and chess. We define a simple evaluation function and employ multi-step searches to create strategies. We show that such scenarios can be analyzed, and find that in cases of extreme uncertainty, it is often better to ignore one's opponent's possible moves. Furthermore, we show that a simple evaluation function in a complex game can lead to interesting and nuanced strategies that follow tactics that tend to select moves that are well tuned to the details of the situation and the relative probabilities of success.
Game theory is appropriate for studying cyber conflict because it allows for an intelligent and goal-driven adversary. Applications of game theory have led to a number of results regarding optimal attack and defense strategies. However, the overwhelming majority of applications explore overly simplistic games, often ones in which each participant's actions are visible to every other participant. These simplifications strip away the fundamental properties of real cyber conflicts: probabilistic alerting, hidden actions, unknown opponent capabilities. In this paper, we demonstrate that it is possible to analyze a more realistic game, one in which different resources have different weaknesses, players have different exploits, and moves occur in secrecy, but they can be detected. Certainly, more advanced and complex games are possible, but the game presented here is more realistic than any other game we know of in the scientific literature. While optimal strategies can be found for simpler games using calculus, case-by-case analysis, or, for stochastic games, Q-learning, our more complex game is more naturally analyzed using the same methods used to study other complex games, such as checkers and chess. We define a simple evaluation function and employ multi-step searches to create strategies. We show that such scenarios can be analyzed, and find that in cases of extreme uncertainty, it is often better to ignore one's opponent's possible moves. Furthermore, we show that a simple evaluation function in a complex game can lead to interesting and nuanced strategies that follow tactics that tend to select moves that are well tuned to the details of the situation and the relative probabilities of success.
After more than a decade of research, web application security continues to be a challenge and the backend database the most appetizing target. The paper proposes preventing injection attacks against the database management system (DBMS) behind web applications by embedding protections in the DBMS itself. The motivation is twofold. First, the approach of embedding protections in operating systems and applications running on top of them has been effective to protect this software. Second, there is a semantic mismatch between how SQL queries are believed to be executed by the DBMS and how they are actually executed, leading to subtle vulnerabilities in prevention mechanisms. The approach – SEPTIC – was implemented in MySQL and evaluated experimentally with web applications written in PHP and Java/Spring. In the evaluation SEPTIC has shown neither false negatives nor false positives, on the contrary of alternative approaches, causing also a low performance overhead in the order of 2.2%.
Infrastructure-as-a-Service (IaaS) clouds such as OpenStack consist of two kinds of nodes in their infrastructure: control nodes and compute nodes. While control nodes run all critical services, compute nodes host virtual machines of customers. Given the large number of compute nodes, and the fact that they are hosting VMs of (possibly malicious) customers, it is possible that some of the compute nodes may be compromised. This paper examines the impact of such a compromise. We focus on OpenStack, a popular open-source cloud plat- form that is widely adopted. We show that attackers com- promising a single compute node can extend their controls over the entire cloud infrastructure. They can then gain free access to resources that they have not paid for, or even bring down the whole cloud to affect all customers. This startling result stems from the cloud platform's misplaced trust, which does not match today's threats. To overcome the weakness, we propose a new system, called SOS , for hardening OpenStack. SOS limits trust on compute nodes. SOS consists of a framework that can enforce a wide range of security policies. Specifically, we applied mandatory access control and capabilities to con- fine interactions among different components. Effective confinement policies are generated automatically. Furthermore, SOS requires no modifications to the OpenStack. This has allowed us to deploy SOS on multiple versions of OpenStack. Our experimental results demonstrate that SOS is scalable, incurs negligible overheads and offers strong protection.
This work presents a highly reliable and tamper-resistant design of Physical Unclonable Function (PUF) exploiting Resistive Random Access Memory (RRAM). The RRAM PUF properties such as uniqueness and reliability are experimentally measured on 1 kb HfO2 based RRAM arrays. Firstly, our experimental results show that selection of the split reference and offset of the split sense amplifier (S/A) significantly affect the uniqueness. More dummy cells are able to generate a more accurate split reference, and relaxing transistor's sizes of the split S/A can reduce the offset, thus achieving better uniqueness. The average inter-Hamming distance (HD) of 40 RRAM PUF instances is 42%. Secondly, we propose using the sum of the read-out currents of multiple RRAM cells for generating one response bit, which statistically minimizes the risk of early retention failure of a single cell. The measurement results show that with 8 cells per bit, 0% intra-HD can maintain more than 50 hours at 150 °C or equivalently 10 years at 69 °C by 1/kT extrapolation. Finally, we propose a layout obfuscation scheme where all the S/A are randomly embedded into the RRAM array to improve the RRAM PUF's resistance against invasive tampering. The RRAM cells are uniformly placed between M4 and M5 across the array. If the adversary attempts to invasively probe the output of the S/A, he has to remove the top-level interconnect and destroy the RRAM cells between the interconnect layers. Therefore, the RRAM PUF has the “self-destructive” feature. The hardware overhead of the proposed design strategies is benchmarked in 64 × 128 RRAM PUF array at 65 nm, while these proposed optimization strategies increase latency, energy and area over a naive implementation, they significantly improve the performance and security.
Proofs of Data Possession/Retrievability (PoDP/PoR) schemes are essential to cloud storage services, since they can increase clients' confidence on the integrity and availability of their data. The majority of PoDP/PoR schemes are constructed from homomorphic linear authentication (HLA) schemes, which decrease the price of communication between the client and the server. In this paper, a new subclass of authentication codes, named ε-authentication codes, is proposed, and a modular construction of HLA schemes from ε-authentication codes is presented. We prove that the security notions of HLA schemes are closely related to the size of the authenticator/tag space and the successful probability of impersonation attacks (with non-zero source states) of the underlying ε-authentication codes. We show that most of HLA schemes used for the PoDP/PoR schemes are instantiations of our modular construction from some ε-authentication codes. Following this line, an algebraic-curves-based ε-authentication code yields a new HLA scheme.
Augmented reality (AR) technologies, such as those in head-mounted displays like Microsoft HoloLens or in automotive windshields, are poised to change how people interact with their devices and the physical world. Though researchers have begun considering the security, privacy, and safety issues raised by these technologies, to date such efforts have focused on input, i.e., how to limit the amount of private information to which AR applications receive access. In this work, we focus on the challenge of output management: how can an AR operating system allow multiple concurrently running applications to safely augment the user's view of the world? That is, how can the OS prevent apps from (for example) interfering with content displayed by other apps or the user's perception of critical real-world context, while still allowing them sufficient flexibility to implement rich, immersive AR scenarios? We explore the design space for the management of visual AR output, propose a design that balances OS control with application flexibility, and lay out the research directions raised and enabled by this proposal.
The image contains a lot of visual as well as hidden information. Both, information must be secured at the time of transmission. With this motivation, a scheme is proposed based on encryption in tetrolet domain. For encryption, an iterative based Arnold transform is used in proposed methodology. The images are highly textured, which contains the authenticity of the image. For that, decryption process is performed in this way so that maximum, the edges and textures should be recovered, effectively. The suggested method has been tested on standard images and results obtained after applying suggested method are significant. A comparison is also performed with some standard existing methods to measure the effectiveness of the suggested method.