Biblio
Detecting and preventing attacks before they compromise a system can be done using acceptance testing, redundancy based mechanisms, and using external consistency checking such external monitoring and watchdog processes. Diversity-based adjudication, is a step towards an oracle that uses knowable behavior of a healthy system. That approach, under best circumstances, is able to detect even zero-day attacks. In this approach we use functionally equivalent but in some way diverse components and we compare their output vectors and reactions for a given input vector. This paper discusses practical relevance of this approach in the context of recent web-service attacks.
As smart meters continue to be deployed around the world collecting unprecedented levels of fine-grained data about consumers, we need to find mechanisms that are fair to both, (1) the electric utility who needs the data to improve their operations, and (2) the consumer who has a valuation of privacy but at the same time benefits from sharing consumption data. In this paper we address this problem by proposing privacy contracts between electric utilities and consumers with the goal of maximizing the social welfare of both. Our mathematical model designs an optimization problem between a population of users that have different valuations on privacy and the costs of operation by the utility. We then show how contracts can change depending on the probability of a privacy breach. This line of research can help inform not only current but also future smart meter collection practices.
We argue that emergent behavior is inherent to cybersecurity.
The concept of differential privacy stems from the study of private query of datasets. In this work, we apply this concept to metric spaces to study a mechanism that randomizes a deterministic query by adding mean-zero noise to keep differential privacy.
Presented as part of the Illinois Science of Security Lablet Bi-Weekly Meetings, September 2014.
Healthcare professionals have unique motivations, goals, perceptions, training, tensions, and behaviors, which guide workflow and often lead to unprecedented workarounds that weaken the efficacy of security policies and mechanisms. Identifying and understanding these factors that contribute to circumvention, as well as the acts of circumvention themselves, is key to designing, implementing, and maintaining security subsystems that achieve security goals in healthcare settings. To this end, we present our research on workarounds to computer security in healthcare settings without compromising the fundamental health goals. We argue and demonstrate that understanding workarounds to computer security, especially in medical settings, requires not only analyses of computer rules and processes, but also interviews and observations with users and security personnel. In addition, we discuss the value of shadowing clinicians and conducting focus groups with them to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of workflow is paramount to achieving security objectives.
Presented at Safety, Security, Privacy and Interoperability of Health Information Technologies (HealthTec 2014), August 19, 2014 in San Diego, CA. See video at URL below.
Trust is a necessary component in cybersecurity. It is a common task for a system to make a decision about whether or not to trust the credential of an entity from another domain, issued by a third party. Generally, in the cyberspace, connected and interacting systems largely rely on each other with respect to security, privacy, and performance. In their interactions, one entity or system needs to trust others, and this "trust" frequently becomes a vulnerability of that system. Aiming at mitigating the vulnerability, we are developing a computational theory of trust, as a part of our efforts towards Science of Security. Previously, we developed a formal-semantics-based calculus of trust [3, 2], in which trust can be calculated based on a trustor's direct observation on the performance of the trustee, or based on a trust network. In this paper, we construct a framework for making trust reasoning based on the observed evidence. We take privacy in cloud computing as a driving application case [5].
Typing is a human activity that can be affected by a number of situational and task-specific factors. Changes in typing behavior resulting from the manipulation of such factors can be predictably observed through key-level input analytics. Here we present a study designed to explore these relationships. Participants play a typing game in which letter composition, word length and number of words appearing together are varied across levels. Inter-keystroke timings and other higher order statistics (such as bursts and pauses), as well as typing strategies, are analyzed from game logs to find the best set of metrics that quantify the effect that different experimental factors have on observable metrics. Beyond task-specific factors, we also study the effects of habituation by recording changes in performance with practice. Currently a work in progress, this research aims at developing a predictive model of human typing. We believe this insight can lead to the development of novel security proofs for interactive systems that can be deployed on existing infrastructure with minimal overhead. Possible applications of such predictive capabilities include anomalous behavior detection, authentication using typing signatures, bot detection using word challenges etc.
The success of machine learning, particularly in supervised settings, has led to numerous attempts to apply it in adversarial settings such as spam and malware detection. The core challenge in this class of applications is that adversaries are not static data generators, but make a deliberate effort to evade the classifiers deployed to detect them. We investigate both the problem of modeling the objectives of such adversaries, as well as the algorithmic problem of accounting for rational, objective-driven adversaries. In particular, we demonstrate severe shortcomings of feature reduction in adversarial settings using several natural adversarial objective functions, an observation that is particularly pronounced when the adversary is able to substitute across similar features (for example, replace words with synonyms or replace letters in words). We offer a simple heuristic method for making learning more robust to feature cross-substitution attacks. We then present a more general approach based on mixed-integer linear programming with constraint generation, which implicitly trades off overfitting and feature selection in an adversarial setting using a sparse regularizer along with an evasion model. Our approach is the first method for combining an adversarial classification algorithm with a very general class of models of adversarial classifier evasion. We show that our algorithmic approach significantly outperforms state-of-the-art alternatives.
The Symposium and Bootcamp on the Science of Security (HotSoS), is a research event centered on the Science of Security (SoS). Following a successful invitational SoS Community Meeting in December 2012, HotSoS 2014 was the first open research event in what we expect will be a continuing series of such events. The key motivation behind developing a Science of Security is to address the fundamental problems of cybersecurity in a principled manner. Security has been intensively studied, but a lot of previous research emphasizes the engineering of specific solutions without first developing the scientific understanding of the problem domain. All too often, security research conveys the flavor of identifying specific threats and removing them in an apparently ad hoc manner. The motivation behind the nascent Science of Security is to understand how computing systems are architected, built, used, and maintained with a view to understanding and addressing security challenges systematically across their life cycle. In particular, two features distinguish the Science of Security from previous research programs on cybersecurity. Scope. The Science of Security considers not just computational artifacts but also incorporates the human, social, and organizational aspects of computing within its purview. Approach. The Science of Security takes a decidedly scientific approach, based on the understanding of empirical evaluation and theoretical foundations as developed in the natural and social sciences, but adapted as appropriate for the "artificial science" (paraphrasing Herb Simon's term) that is computing.
While automated methods are the first line of defense for detecting attacks on webservers, a human agent is required to understand the attacker's intent and the attack process. The goal of this research is to understand the value of various log fields and the cognitive processes by which log information is grouped, searched, and correlated. Such knowledge will enable the development of human-focused log file investigation technologies. We performed controlled experiments with 65 subjects (IT professionals and novices) who investigated excerpts from six webserver log files. Quantitative and qualitative data were gathered to: 1) analyze subject accuracy in identifying malicious activity; 2) identify the most useful pieces of log file information; and 3) understand the techniques and strategies used by subjects to process the information. Statistically significant effects were observed in the accuracy of identifying attacks and time taken depending on the type of attack. Systematic differences were also observed in the log fields used by high-performing and low-performing groups. The findings include: 1) new insights into how specific log data fields are used to effectively assess potentially malicious activity; 2) obfuscating factors in log data from a human cognitive perspective; and 3) practical implications for tools to support log file investigations.
Hypervisor activity is designed to be hidden from guest Virtual Machines (VM) as well as external observers. In this paper, we demonstrate that this does not always occur. We present a method by which an external observer can learn sensitive information about hypervisor internals, such as VM scheduling or hypervisor-level monitoring schemes, by observing a VM. We refer to this capability as Hypervisor Introspection (HI).
HI can be viewed as the inverse process of the well-known Virtual Machine Introspection (VMI) technique. VMI is a technique to extract VMs’ internal state from the hypervi- sor, facilitating the implementation of reliability and security monitors[1]. Conversely, HI is a technique that allows VMs to autonomously extract hypervisor information. This capability enables a wide range of attacks, for example, learning a hypervisor’s properties (version, configuration, etc.), defeating hypervisor-level monitoring systems, and compromising the confidentiality of co-resident VMs. This paper focuses on the discovery of a channel to implement HI, and then leveraging that channel for a novel attack against traditional VMI.
In order to perform HI, there must be a method of extracting information from the hypervisor. Since this information is intentionally hidden from a VM, we make use of a side channel. When the hypervisor checks a VM using VMI, VM execution (e.g. network communication between a VM and a remote system) must pause. Therefore, information regarding the hypervisor’s activity can be leaked through this suspension of execution. We call this side channel the VM suspend side channel, illustrated in Fig. 1. As a proof of concept, this paper presents how correlating the results of in-VM micro- benchmarking and out-of-VM reference monitoring can be used to determine when hypervisor-level monitoring tools are vulnerable to attacks.
To keep malware out of mobile application markets, existing techniques analyze the security aspects of application behaviors and summarize patterns of these security aspects to determine what applications do. However, user expectations (reflected via user perception in combination with user judgment) are often not incorporated into such analysis to determine whether application behaviors are within user expectations. This poster presents our recent work on bridging the semantic gap between user perceptions of the application behaviors and the actual application behaviors.
Sandboxes impose a security policy, isolating applications and their components from the rest of a system. While many sandboxing techniques exist, state of the art sandboxes generally perform their functions within the system that is being defended. As a result, when the sandbox fails or is bypassed, the security of the surrounding system can no longer be assured. We experiment with the idea of in-nimbo sandboxing, encapsulating untrusted computations away from the system we are trying to protect. The idea is to delegate computations that may be vulnerable or malicious to virtual machine instances in a cloud computing environment. This may not reduce the possibility of an in-situ sandbox compromise, but it could significantly reduce the consequences should that possibility be realized. To achieve this advantage, there are additional requirements, including: (1) A regulated channel between the local and cloud environments that supports interaction with the encapsulated application, (2) Performance design that acceptably minimizes latencies in excess of the in-situ baseline. To test the feasibility of the idea, we built an in-nimbo sandbox for Adobe Reader, an application that historically has been subject to significant attacks. We undertook a prototype deployment with PDF users in a large aerospace firm. In addition to thwarting several examples of existing PDF-based malware, we found that the added increment of latency, perhaps surprisingly, does not overly impair the user experience with respect to performance or usability.
One of the biggest challenges in mobile security is human behavior. The most secure password may be useless if it is sent as a text or in an email. The most secure network is only as secure as its most careless user. Thus, in the current project we sought to discover the conditions under which users of mobile devices were most likely to make security errors. This scaffolds a larger project where we will develop automatic ways of detecting such environments and eventually supporting users during these times to encourage safe mobile behaviors.
The InViz tool is a functional prototype that provides graphical visualizations of log file events to support real-time attack investigation. Through visualization, both experts and novices in cybersecurity can analyze patterns of application behavior and investigate potential cybersecurity attacks. The goal of this research is to identify and evaluate the cybersecurity information to visualize that reduces the amount of time required to perform cyber forensics.
Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.
In highly configurable systems the configuration space is too big for (re-)certifying every configuration in isolation. In this project, we combine software analysis with network analysis to detect which configuration options interact and which have local effects. Instead of analyzing a system as Linux and SELinux for every combination of configuration settings one by one (>102000 even considering compile-time configurations only), we analyze the effect of each configuration option once for the entire configuration space. The analysis will guide us to designs separating interacting configuration options in a core system and isolating orthogonal and less trusted configuration options from this core.
According to a 2011 survey in healthcare, the most commonly reported breaches of protected health information involved employees snooping into medical records of friends and relatives. Logging mechanisms can provide a means for forensic analysis of user activity in software systems by proving that a user performed certain actions in the system. However, logging mechanisms often inconsistently capture user interactions with sensitive data, creating gaps in traces of user activity. Explicit design principles and systematic testing of logging mechanisms within the software development lifecycle may help strengthen the overall security of software. The objective of this research is to observe the current state of logging mechanisms by performing an exploratory case study in which we systematically evaluate logging mechanisms by supplementing the expected results of existing functional black-box test cases to include log output. We perform an exploratory case study of four open-source electronic health record (EHR) logging mechanisms: OpenEMR, OSCAR, Tolven eCHR, and WorldVistA. We supplement the expected results of 30 United States government-sanctioned test cases to include log output to track access of sensitive data. We then execute the test cases on each EHR system. Six of the 30 (20%) test cases failed on all four EHR systems because user interactions with sensitive data are not logged. We find that viewing protected data is often not logged by default, allowing unauthorized views of data to go undetected. Based on our results, we propose a set of principles that developers should consider when developing logging mechanisms to ensure the ability to capture adequate traces of user activity.
Online cyber threat descriptions are rich, but little research has attempted to systematically analyze these descriptions. In this paper, we process and analyze two of Symantec’s online threat description corpora. The Anti-Virus (AV) corpus contains descriptions of more than 12,400 threats detected by Symantec’s AV, and the Intrusion Prevention System (IPS) corpus contains descriptions of more than 2,700 attacks detected by Symantec’s IPS. In our analysis, we quantify the over time evolution of threat severity and type in the corpora. We also assess the amount of time Symantec takes to release signatures for newly discovered threats. Our analysis indicates that a very small minority of threats in the AV corpus are high-severity, whereas the majority of attacks in the IPS corpus are high-severity. Moreover, we find that the prevalence of different threat types such as worms and viruses in the corpora varies considerably over time. Finally, we find that Symantec prioritizes releasing signatures for fast propagating threats.
Presented at NSA Science of Security Quarterly Meeting, July 2014.
Presented at the Illinois SoS Bi-weekly Meeting, December 2014.
As mobile technology begins to dominate computing, understanding how their use impacts security becomes increasingly important. Fortunately, this challenge is also an opportunity: the rich set of sensors with which most mobile devices are equipped provide a rich contextual dataset, one that should enable mobile user behavior to be modeled well enough to predict when users are likely to act insecurely, and provide cognitively grounded explanations of those behaviors. We will evaluate this hypothesis with a series of experiments designed first to confirm that mobile sensor data can reliably predict user stress, and that users experiencing such stress are more likely to act insecurely.
Stackelberg security game models and associated computational tools have seen deployment in a number of high- consequence security settings, such as LAX canine patrols and Federal Air Marshal Service. This deployment across essentially independent agencies raises a natural question: what global impact does the resulting strategic interaction among the defenders, each using a similar model, have? We address this question in two ways. First, we demonstrate that the most common solution concept of Strong Stackelberg equilibrium (SSE) can result in significant under-investment in security entirely because SSE presupposes a single defender. Second, we propose a framework based on a different solution concept which incorporates a model of interdependencies among targets, and show that in this framework defenders tend to over-defend, even under significant positive externalities of increased defense.
Modeling and analyzing security of networked systems is an important problem in the emerging Science of Security and has been under active investigation. In this paper, we propose a new approach towards tackling the problem. Our approach is inspired by the shock model and random environment techniques in the Theory of Reliability, while accommodating security ingredients. To the best of our knowledge, our model is the first that can accommodate a certain degree of adaptiveness of attacks, which substantially weakens the often-made independence and exponential attack inter-arrival time assumptions. The approach leads to a stochastic process model with two security metrics, and we attain some analytic results in terms of the security metrics.