Biblio

Found 369 results

Filters: Keyword is science of security  [Clear All Filters]
2016-11-17
2015-11-11
Wenxuan Zhou, University of Illinois at Urbana-Champaign, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, P. Brighten Godfrey, University of Illinois at Urbana-Champaign.  2015.  Enforcing Customizable Consistency Properties in Software-Defined Networks. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2015).

It is critical to ensure that network policy remains consistent during state transitions. However, existing techniques impose a high cost in update delay, and/or FIB space. We propose the Customizable Consistency Generator (CCG), a fast and generic framework to support customizable consistency policies during network updates. CCG effectively reduces the task of synthesizing an update plan under the constraint of a given consistency policy to a verification problem, by checking whether an update can safely be installed in the network at a particular time, and greedily processing network state transitions to heuristically minimize transition delay. We show a large class of consistency policies are guaranteed by this greedy heuristic alone; in addition, CCG makes judicious use of existing heavier-weight network update mechanisms to provide guarantees when necessary. As such, CCG nearly achieves the “best of both worlds”: the efficiency of simply passing through updates in most cases, with the consistency guarantees of more heavyweight techniques. Mininet and physical testbed evaluations demonstrate CCG’s capability to achieve various types of consistency, such as path and bandwidth properties, with zero switch memory overhead and up to a 3× delay reduction compared to previous solutions.

2016-11-11
2015-11-12
Lou, Jian, Vorobeychik, Yevgeniy.  2015.  Equilibrium analysis of multi-defender security games. Proceedings of the 24th International Conference on Artificial Intelligence. :596–602.

Stackelberg game models of security have received much attention, with a number of approaches for
computing Stackelberg equilibria in games with a single defender protecting a collection of targets. In contrast, multi-defender security games have received significantly less attention, particularly when each defender protects more than a single target. We fill this gap by considering a multi-defender security game, with a focus on theoretical characterizations of equilibria and the price of anarchy. We present the analysis of three models of increasing generality, two in which each defender protects multiple targets. In all models, we find that the defenders often have the incentive to over protect the targets, at times significantly. Additionally, in the simpler models, we find that the price of anarchy is unbounded, linearly increasing both in the number of defenders and the number of targets per defender. Surprisingly, when we consider a more general model, this results obtains only in a “corner” case in the space of parameters; in most cases, however, the price of anarchy converges to a constant when the number of defenders increases.

2017-02-09
Phuong Cao, University of Illinois at Urbana-Champaign.  2015.  An Experiement Using Factor Graph for Early Attack Detection. Computer Science.

This paper presents a factor graph based framework (namely AttackTagger) for high accuracy and preemptive detection of attacks. We use security logs on real-incidents that occurred over a six-year period at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign to evaluate AttackTagger. Our data consist of attacks that led directly to the target system being compromised, i.e., not detected in advance, either by the security analysts or by intrusion detection systems. AttackTagger detected 74 percent of attacks, a vast majority of them were detected before the system misuse. AttackTagger uncovered six hidden attacks that were not detected by security analysts.

2017-02-10
Phuong Cao, University of Illinois at Urbana-Champaign.  2015.  An Experiment Using Factor Graph for Early Attack Detection. Computer Science.

This paper presents a factor graph based framework (namely AttackTagger)
for high accuracy and preemptive detection of attacks. We use security logs
on real-incidents that occurred over a six-year period at the National Cen-
ter for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign to evaluate AttackTagger. Our data consist of attacks
that led directly to the target system being compromised, i.e., not detected
in advance, either by the security analysts or by intrusion detection sys-
tems. AttackTagger detected 74 percent of attacks, a vast majority of them
were detected before the system misuse. AttackTagger uncovered six hidden
attacks that were not detected by security analysts.

2015-11-17
Tao Xie, University of Illinois at Urbana-Champaign, Judith Bishop, Microsoft Research, Nikolai Tillmann, Microsoft Research, Jonathan de Halleux, Microsoft Research.  2015.  Gamifying Software Security Education and Training via Secure Coding Duels in Code Hunt. Symposium and Bootcamp for the Science of Security (HotSoS).

Sophistication and flexibility of software development make it easy to leave security vulnerabilities in software applications for attack- ers. It is critical to educate and train software engineers to avoid in- troducing vulnerabilities in software applications in the first place such as adopting secure coding mechanisms and conducting secu- rity testing. A number of websites provide training grounds to train people’s hacking skills, which are highly related to security test- ing skills, and train people’s secure coding skills. However, there exists no interactive gaming platform for instilling gaming aspects into the education and training of secure coding. To address this issue, we propose to construct secure coding duels in Code Hunt, a high-impact serious gaming platform released by Microsoft Re- search. In Code Hunt, a coding duel consists of two code segments: a secret code segment and a player-visible code segment. To solve a coding duel, a player iteratively modifies the player-visible code segment to match the functional behaviors of the secret code seg- ment. During the duel-solving process, the player is given clues as a set of automatically generated test cases to characterize sample functional behaviors of the secret code segment. The game aspect in Code Hunt is to recognize a pattern from the test cases, and to re-engineer the player-visible code segment to exhibit the expected behaviors. Secure coding duels proposed in this work are coding duels that are carefully designed to train players’ secure coding skills, such as sufficient input validation and access control.

2016-12-01
Harold Thimbleby, Swansea University, Ross Koppel, University of Pennsylvania.  2015.  The Healthtech Declaration. IEEE Security and Privacy. 13(6):82-84.

Healthcare technology—sometimes called “healthtech” or “healthsec”—is enmeshed with security and privacy via usability, performance, and cost-effectiveness issues. It is multidisciplinary, distributed, and complex—and it also involves many competing stakeholders and interests. To address the problems that arise in such a multifaceted field—comprised of physicians, IT professionals, management information specialists, computer scientists, edical informaticists, and epidemiologists, to name a few—the Healthtech Declaration was initiated at the most recent USENIX Summit on Information Technologies for Health (Healthtech 2015) held in Washington, DC. This Healthtech Declaration includes an easy-touse—and easy-to-cite—checklist of key issues that anyone proposing a solution must consider (see “The Healthtech Declaration Checklist” sidebar). In this article, we provide the context and motivation for the declaration.

2015-11-12
Krichene, Walid, Balandat, Maximilian, Tomlin, Claire, Bayen, Alexandre.  2015.  The Hedge Algorithm on a Continuum. Proceedings of the 32nd International Conference on Machine Learning (ICML-15). :824-832.

ABSTRACT: We consider an onlinse optimization problem on a compact subset S ⊂ Rn (not necessarily convex), in which a decision maker chooses, at each iteration t, a probability distribution xover S, and seeks to minimize a cumulative expected loss, , where ℓ(t) is a Lipschitz loss function revealed at the end of iteration t. Building on previous work, we propose a generalized Hedge algorithm and show a  bound on the regret when the losses are uniformly Lipschitz and S is uniformly fat (a weaker condition than convexity). Finally, we propose a generalization to the dual averaging method on the set of Lebesgue-continuous distributions over S.

2016-11-15
Mohammad Noureddine, University of Illinois at Urbana-Champaign.  2015.  Human Aware Science of Security.

Presented at the Illinois SoS Bi-weekly Meeting, February 2015.

2016-11-11
Brighten Godfrey, University of Illions at Urbana-Champagin, Anduo Wang, Temple University, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2015.  A Hypothesis Testing Framework for Network Security.

We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.

First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.

Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.

2015-11-11
John C. Mace, Newcastle University, Charles Morisset, Newcastle University, Aad Van Moorsel, Newcastle University.  2015.  Impact of Policy Design on Workflow Resiliency Computation Time. Quantitative Evaluation of Systems (QEST 2015).

Workflows are complex operational processes that include security constraints restricting which users can perform which tasks. An improper user-task assignment may prevent the completion of the work- flow, and deciding such an assignment at runtime is known to be complex, especially when considering user unavailability (known as the resiliency problem). Therefore, design tools are required that allow fast evaluation of workflow resiliency. In this paper, we propose a methodology for work- flow designers to assess the impact of the security policy on computing the resiliency of a workflow. Our approach relies on encoding a work- flow into the probabilistic model-checker PRISM, allowing its resiliency to be evaluated by solving a Markov Decision Process. We observe and illustrate that adding or removing some constraints has a clear impact on the resiliency computation time, and we compute the set of security constraints that can be artificially added to a security policy in order to reduce the computation time while maintaining the resiliency.

2015-11-12
Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Integrity Assurance in Resource-bounded Systems Through Stochastic Message Authentication. Proceedings of the 2015 Symposium and Bootcamp on the Science of Security. :1:1–1:12.

Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyber-physical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause signi cant physical or financial harm. We propose a formal game-theoretic framework for optimal stochastic message authentication, providing provable integrity guarantees for resource-bounded systems based on an existing MAC scheme. We use our framework to investigate attacker deterrence, as well as optimal design of stochastic message authentication schemes when deterrence is impossible. Finally, we provide experimental results on the computational performance of our framework in practice.

2015-11-11
Ning Liu, Illinois Institute of Technology, Xian-He Sun, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology.  2015.  On Massively Parallel Simulation of Large-Scale Fat-Tree Networks for HPC Systems and Data Centers (poster). ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

Best Poster Award, ACM SIGCOMM Conference on Principles of Advanced Discrete Simulation, London, UK, June 10-12, 2015.

2015-11-16
Vijay Kothari, Dartmouth College, Jim Blythe, University of Southern California, Ross Koppel, University of Pennsylvania, Sean Smith, Dartmouth College.  2015.  Measuring the Security Impacts of Password Policies Using Cognitive Behavioral Agent Based Modeling. Symposium and Bootcamp on the Science of Security (HotSoS).

Agent-based modeling can serve as a valuable asset to security personnel who wish to better understand the security landscape within their organization, especially as it relates to user behavior and circumvention. In this paper, we ar- gue in favor of cognitive behavioral agent-based modeling for usable security, report on our work on developing an agent- based model for a password management scenario, perform a sensitivity analysis, which provides us with valuable insights into improving security (e.g., an organization that wishes to suppress one form of circumvention may want to endorse another), and provide directions for future work.

Sean Smith, Dartmouth College, Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College.  2015.  Mismorphism: A Semiotic Model of Computer Security Circumvention.

In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and improve the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circumvention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems.

This paper reports on our work compiling a large corpus of such incidents and developing a model based on semiotic triads to examine security circumvention. This model suggests that mismorphisms— mappings that fail to preserve structure—lie at the heart of circumvention scenarios; differential percep- tions and needs explain users’ actions. We support this claim with empirical data from the corpus.

2015-11-17
Sean Smith, Dartmouth College, Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College.  2015.  Mismorphism: A Semiotic Model of Computer Security Circumvention (poster abstract). Symposium and Bootcamp on the Science of Security (HotSoS).

In real world domains, from healthcare to power to finance, we deploy computer systems intended to streamline and im- prove the activities of human agents in the corresponding non-cyber worlds. However, talking to actual users (instead of just computer security experts) reveals endemic circum- vention of the computer-embedded rules. Good-intentioned users, trying to get their jobs done, systematically work around security and other controls embedded in their IT systems.

This poster reports on our work compiling a large corpus of such incidents and developing a model based on semi- otic triads to examine security circumvention. This model suggests that mismorphisms—mappings that fail to preserve structure—lie at the heart of circumvention scenarios; dif- ferential perceptions and needs explain users’ actions. We support this claim with empirical data from the corpus.

2016-12-13
2015-11-11
John C. Mace, Newcastle University, Charles Morisset, Newcastle University, Aad Van Moorsel, Newcastle University.  2015.  Modelling User Availability in Workflow Resiliency Analysis. Symposium and Bootcamp on the Science of Security (HotSoS).

Workflows capture complex operational processes and include security constraints limiting which users can perform which tasks. An improper security policy may prevent cer- tain tasks being assigned and may force a policy violation. Deciding whether a valid user-task assignment exists for a given policy is known to be extremely complex, especially when considering user unavailability (known as the resiliency problem). Therefore tools are required that allow automatic evaluation of workflow resiliency. Modelling well defined workflows is fairly straightforward, however user availabil- ity can be modelled in multiple ways for the same workflow. Correct choice of model is a complex yet necessary concern as it has a major impact on the calculated resiliency. We de- scribe a number of user availability models and their encod- ing in the model checker PRISM, used to evaluate resiliency. We also show how model choice can affect resiliency computation in terms of its value, memory and CPU time.

2016-04-08
Dahan, Mathieu, Amin, Saurabh.  2015.  Network Flow Routing under Strategic Link Disruptions. arXiv preprint arXiv:1512.09335.

This paper considers a 2-player strategic game for network routing under link disruptions. Player 1 (defender) routes flow through a network to maximize her value of effective flow while facing transportation costs. Player 2 (attacker) simultaneously disrupts one or more links to maximize her value of lost flow but also faces cost of disrupting links. This game is strategically equivalent to a zero-sum game. Linear programming duality and the max-flow min-cut theorem are applied to obtain properties that are satisfied in any mixed Nash equilibrium. In any equilibrium, both players achieve identical payoffs. While the defender's expected transportation cost decreases in attacker's marginal value of lost flow, the attacker's expected cost of attack increases in defender's marginal value of effective flow. Interestingly, the expected amount of effective flow decreases in both these parameters. These results can be viewed as a generalization of the classical max-flow with minimum transportation cost problem to adversarial environments.

2016-04-07
Laszka, Aron, Vorobeychik, Yevgeniy, Koutsoukos, Xenofon.  2015.  Optimal Personalized Filtering Against Spear-phishing Attacks. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. :958–964.

To penetrate sensitive computer networks, attackers can use spear phishing to sidestep technical security mechanisms by exploiting the privileges of careless users. In order to maximize their success probability, attackers have to target the users that constitute the weakest links of the system. The optimal selection of these target users takes into account both the damage that can be caused by a user and the probability of a malicious e-mail being delivered to and opened by a user. Since attackers select their targets in a strategic way, the optimal mitigation of these attacks requires the defender to also personalize the e-mail filters by taking into account the users' properties.

In this paper, we assume that a learned classifier is given and propose strategic per-user filtering thresholds for mitigating spear-phishing attacks. We formulate the problem of filtering targeted and non-targeted malicious e-mails as a Stackelberg security game. We characterize the optimal filtering strategies and show how to compute them in practice. Finally, we evaluate our results using two real-world datasets and demonstrate that the proposed thresholds lead to lower losses than nonstrategic thresholds.

2016-04-12
Dong Jin, Illinois Institute of Technology, David Nicol, University of Illinois at Urbana-Champaign.  2015.  Parallel Simulation and Virtual-machine-based Emulation of Software-defined Network. ACM Transactions on Modeling and Computer Simulation. 26(1)

The emerging software-defined networking (SDN) technology decouples the control plane from the data plane in a computer network with open and standardized interfaces, and hence opens up the network designers’ options and ability to innovate. The wide adoption of SDN in industry has motivated the development of large-scale, high-fidelity testbeds for evaluation of systems that incorporate SDN. In this article, we develop a framework to support OpenFlow-based SDN simulation and distributed emulation, by leveraging our prior work on a hybrid network testbed with a parallel network simulator and a virtual-machine-based emulation system. We show how to exploit typical SDN controller behaviors to handle performance issues caused by the centralized controller in parallel discrete-event simulation. In particular, we develop an asynchronous synchronization algorithm for passive SDN controllers and design a two-level architecture for active SDN controllers. We evaluate the system performance, showing good scalability. Finally, we present a case study, using the testbed, to evaluate network verification applications in an SDN-based data center network. CCS Concepts: Networks→Network simulations; Computing methodologies→Simulation

2015-11-18
Phuong Cao, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2015.  Preemptive Intrusion Detection: Theoretical Framework and Real-World Measurements. Symposium and Bootcamp on the Science of Security, (HotSoS 2015).

This paper presents a Factor Graph based framework called AttackTagger for highly accurate and preemptive detection of attacks, i.e., before the system misuse. We use secu- rity logs on real incidents that occurred over a six-year pe- riod at the National Center for Supercomputing Applica- tions (NCSA) to evaluate AttackTagger. Our data consist of security incidents that led to compromise of the target system, i.e., the attacks in the incidents were only identified after the fact by security analysts. AttackTagger detected 74 percent of attacks, and the majority them were detected before the system misuse. Finally, AttackTagger uncovered six hidden attacks that were not detected by intrusion de- tection systems during the incidents or by security analysts in post-incident forensic analysis.

2016-11-16
Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, Phuong Cao, University of Illinois at Urbana-Champaign.  2015.  Preemptive Intrusion Detection: Theoretical Framework and Real-world Measurements.

Presented at the NSA SoS Quarterly Lablet Meeting, January 2015 by Ravi Iyer.

Presented at the Illinois SoS Bi-Weekly Meeting, February 2015 by Phuong Cao.