Biblio

Found 100 results

Filters: Keyword is moving target defense  [Clear All Filters]
2019-04-29
Champagne, Samuel, Makanju, Tokunbo, Yao, Chengchao, Zincir-Heywood, Nur, Heywood, Malcolm.  2018.  A Genetic Algorithm for Dynamic Controller Placement in Software Defined Networking. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1632–1639.

The Software Defined Networking paradigm has enabled dynamic configuration and control of large networks. Although the division of the control and data planes on networks has lead to dynamic reconfigurability of large networks, finding the minimal and optimal set of controllers that can adapt to the changes in the network has proven to be a challenging problem. Recent research tends to favor small solution sets with a focus on either propagation latency or controller load distribution, and struggles to find large balanced solution sets. In this paper, we propose a multi-objective genetic algorithm based approach to the controller placement problem that minimizes inter-controller latency, load distribution and the number of controllers with fitness sharing. We demonstrate that the proposed approach provides diverse and adaptive solutions to real network architectures such as the United States backbone and Japanese backbone networks. We further discuss the relevance and application of a diversity focused genetic algorithm for a moving target defense security model.

2019-06-17
Zheng, Jianjun, Siami Namin, Akbar.  2018.  A Markov Decision Process to Determine Optimal Policies in Moving Target. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :2321–2323.

Moving Target Defense (MTD) has been introduced as a new game changer strategy in cybersecurity to strengthen defenders and conversely weaken adversaries. The successful implementation of an MTD system can be influenced by several factors including the effectiveness of the employed technique, the deployment strategy, the cost of the MTD implementation, and the impact from the enforced security policies. Several efforts have been spent on introducing various forms of MTD techniques. However, insufficient research work has been conducted on cost and policy analysis and more importantly the selection of these policies in an MTD-based setting. This poster paper proposes a Markov Decision Process (MDP) modeling-based approach to analyze security policies and further select optimal policies for moving target defense implementation and deployment. The adapted value iteration method would solve the Bellman Optimality Equation for optimal policy selection for each state of the system. The results of some simulations indicate that such modeling can be used to analyze the impact of costs of possible actions towards the optimal policies.

2019-12-16
Chen, Ping, Yu, Han, Zhao, Min, Wang, Jinshuang.  2018.  Research and Implementation of Cross-site Scripting Defense Method Based on Moving Target Defense Technology. 2018 5th International Conference on Systems and Informatics (ICSAI). :818–822.

The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.

2019-02-08
Xiong, Xinli, Zhao, Guangsheng, Wang, Xian.  2018.  A System Attack Surface Based MTD Effectiveness and Cost Quantification Framework. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :175-179.

Moving Target Defense (MTD) is a game-changing method to thwart adversaries and reverses the imbalance situation in network countermeasures. Introducing Attack Surface (AS) into MTD security assessment brings productive concepts to qualitative and quantitative analysis. The quantification of MTD effectiveness and cost (E&C) has been under researched, using simulation models and emulation testbeds, to give accurate and reliable results for MTD technologies. However, the lack of system-view evaluation impedes MTD to move toward large-scale applications. In this paper, a System Attack Surface Based Quantification Framework (SASQF) is proposed to establish a system-view based framework for further research in Attack Surface and MTD E&C quantification. And a simulated model based on SASQF is developed to provide illustrations and software simulation methods. A typical C/S scenario and Cyber Kill Chain (CKC) attacks are presented in case study and several simulated results are given. From the simulated results, IP mutation frequency is the key to increase consumptions of adversaries, while the IP mutation pool is not the principal factor to thwart adversaries in reconnaissance and delivery of CKC steps. For system user operational cost, IP mutation frequency influence legitimate connections in relative values under ideal link state without delay, packet lose and jitter. The simulated model based on SASQF also provides a basic method to find the optimal IP mutation frequency through simulations.

2020-05-15
Aydeger, Abdullah, Saputro, Nico, Akkaya, Kemal.  2018.  Utilizing NFV for Effective Moving Target Defense Against Link Flooding Reconnaissance Attacks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :946—951.

Moving target defense (MTD) is becoming popular with the advancements in Software Defined Networking (SDN) technologies. With centralized management through SDN, changing the network attributes such as routes to escape from attacks is simple and fast. Yet, the available alternate routes are bounded by the network topology, and a persistent attacker that continuously perform the reconnaissance can extract the whole link-map of the network. To address this issue, we propose to use virtual shadow networks (VSNs) by applying Network Function Virtualization (NFV) abilities to the network in order to deceive attacker with the fake topology information and not reveal the actual network topology and characteristics. We design this approach under a formal framework for Internet Service Provider (ISP) networks and apply it to the recently emerged indirect DDoS attacks, namely Crossfire, for evaluation. The results show that attacker spends more time to figure out the network behavior while the costs on the defender and network operations are negligible until reaching a certain network size.

2019-03-22
Alavizadeh, H., Jang-Jaccard, J., Kim, D. S..  2018.  Evaluation for Combination of Shuffle and Diversity on Moving Target Defense Strategy for Cloud Computing. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :573-578.

Moving Target Defence (MTD) has been recently proposed and is an emerging proactive approach which provides an asynchronous defensive strategies. Unlike traditional security solutions that focused on removing vulnerabilities, MTD makes a system dynamic and unpredictable by continuously changing attack surface to confuse attackers. MTD can be utilized in cloud computing to address the cloud's security-related problems. There are many literature proposing MTD methods in various contexts, but it still lacks approaches to evaluate the effectiveness of proposed MTD method. In this paper, we proposed a combination of Shuffle and Diversity MTD techniques and investigate on the effects of deploying these techniques from two perspectives lying on two groups of security metrics (i) system risk: which is the cloud providers' perspective and (ii) attack cost and return on attack: which are attacker's point of view. Moreover, we utilize a scalable Graphical Security Model (GSM) to enhance the security analysis complexity. Finally, we show that combining MTD techniques can improve both aforementioned two groups of security metrics while individual technique cannot.

2019-12-02
Torkura, Kennedy A., Sukmana, Muhammad I.H., Kayem, Anne V.D.M., Cheng, Feng, Meinel, Christoph.  2018.  A Cyber Risk Based Moving Target Defense Mechanism for Microservice Architectures. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :932–939.
Microservice Architectures (MSA) structure applications as a collection of loosely coupled services that implement business capabilities. The key advantages of MSA include inherent support for continuous deployment of large complex applications, agility and enhanced productivity. However, studies indicate that most MSA are homogeneous, and introduce shared vulnerabilites, thus vulnerable to multi-step attacks, which are economics-of-scale incentives to attackers. In this paper, we address the issue of shared vulnerabilities in microservices with a novel solution based on the concept of Moving Target Defenses (MTD). Our mechanism works by performing risk analysis against microservices to detect and prioritize vulnerabilities. Thereafter, security risk-oriented software diversification is employed, guided by a defined diversification index. The diversification is performed at runtime, leveraging both model and template based automatic code generation techniques to automatically transform programming languages and container images of the microservices. Consequently, the microservices attack surfaces are altered thereby introducing uncertainty for attackers while reducing the attackability of the microservices. Our experiments demonstrate the efficiency of our solution, with an average success rate of over 70% attack surface randomization.
2019-09-09
C. Wang, Z. Lu.  2018.  Cyber Deception: Overview and the Road Ahead. IEEE Security Privacy. 16:80-85.

Since the concept of deception for cybersecurity was introduced decades ago, several primitive systems, such as honeypots, have been attempted. More recently, research on adaptive cyber defense techniques has gained momentum. The new research interests in this area motivate us to provide a high-level overview of cyber deception. We analyze potential strategies of cyber deception and its unique aspects. We discuss the research challenges of creating effective cyber deception-based techniques and identify future research directions.

Kesidis, G., Shan, Y., Fleck, D., Stavrou, A., Konstantopoulos, T..  2018.  An adversarial coupon-collector model of asynchronous moving-target defense against botnet reconnaissance*. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :61–67.

We consider a moving-target defense of a proxied multiserver tenant of the cloud where the proxies dynamically change to defeat reconnaissance activity by a botnet planning a DDoS attack targeting the tenant. Unlike the system of [4] where all proxies change simultaneously at a fixed rate, we consider a more “responsive” system where the proxies may change more rapidly and selectively based on the current session request intensity, which is expected to be abnormally large during active reconnaissance. In this paper, we study a tractable “adversarial” coupon-collector model wherein proxies change after a random period of time from the latest request, i.e., asynchronously. In addition to determining the stationary mean number of proxies discovered by the attacker, we study the age of a proxy (coupon type) when it has been identified (requested) by the botnet. This gives us the rate at which proxies change (cost to the defender) when the nominal client request load is relatively negligible.

2018-09-12
Tian, Jue, Tan, Rui, Guan, Xiaohong, Liu, Ting.  2017.  Hidden Moving Target Defense in Smart Grids. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :21–26.
Recent research has proposed a moving target defense (MTD) approach that actively changes transmission line susceptance to preclude stealthy false data injection (FDI) attacks against the state estimation of a smart grid. However, existing studies were often conducted under a less adversarial setting, in that they ignore the possibility that an alert attacker can also try to detect the activation of MTD and then cancel any FDI attack until they learn the new system configuration after MTD. Indeed, in this paper, we show that this can be achieved easily by the attacker. To improve the stealthiness of MTD against the attacker, we propose a hidden MTD approach that maintains the power flows of the whole grid after MTD. We develop an algorithm to construct the hidden MTD and analyze its feasibility condition when only a subset of transmission lines can adjust susceptance. Simulations are conducted to demonstrate the effectiveness of the hidden MTD against alert attackers under realistic settings.
2018-11-19
Picek, Stjepan, Hemberg, Erik, O'Reilly, Una-May.  2017.  If You Can'T Measure It, You Can'T Improve It: Moving Target Defense Metrics. Proceedings of the 2017 Workshop on Moving Target Defense. :115–118.
We propose new metrics drawing inspiration from the optimization domain that can be used to characterize the effectiveness of moving target defenses better. Besides that, we propose a Network Neighborhood Partitioning algorithm that can help to measure the influence of MTDs more precisely. The techniques proposed here are generic and could be combined with existing metrics. The obtained results demonstrate how additional information about the effectiveness of defenses can be obtained as well as how network neighborhood partitioning helps to improve the granularity of metrics.
Picek, Stjepan, Hemberg, Erik, O'Reilly, Una-May.  2017.  If You Can'T Measure It, You Can'T Improve It: Moving Target Defense Metrics. Proceedings of the 2017 Workshop on Moving Target Defense. :115–118.
We propose new metrics drawing inspiration from the optimization domain that can be used to characterize the effectiveness of moving target defenses better. Besides that, we propose a Network Neighborhood Partitioning algorithm that can help to measure the influence of MTDs more precisely. The techniques proposed here are generic and could be combined with existing metrics. The obtained results demonstrate how additional information about the effectiveness of defenses can be obtained as well as how network neighborhood partitioning helps to improve the granularity of metrics.
2018-09-12
Rubio-Medrano, Carlos E., Lamp, Josephine, Doupé, Adam, Zhao, Ziming, Ahn, Gail-Joon.  2017.  Mutated Policies: Towards Proactive Attribute-based Defenses for Access Control. Proceedings of the 2017 Workshop on Moving Target Defense. :39–49.
Recently, both academia and industry have recognized the need for leveraging real-time information for the purposes of specifying, enforcing and maintaining rich and flexible authorization policies. In such a context, security-related properties, a.k.a., attributes, have been recognized as a convenient abstraction for providing a well-defined representation of such information, allowing for them to be created and exchanged by different independently-run organizational domains for authorization purposes. However, attackers may attempt to compromise the way attributes are generated and communicated by recurring to hacking techniques, e.g., forgery, in an effort to bypass authorization policies and their corresponding enforcement mechanisms and gain unintended access to sensitive resources as a result. In this paper, we propose a novel technique that allows for enterprises to pro-actively collect attributes from the different entities involved in the access request process, e.g., users, subjects, protected resources, and running environments. After the collection, we aim to carefully select the attributes that uniquely identify the aforementioned entities, and randomly mutate the original access policies over time by adding additional policy rules constructed from the newly-identified attributes. This way, even when attackers are able to compromise the original attributes, our mutated policies may offer an additional layer of protection to deter ongoing and future attacks. We present the rationale and experimental results supporting our proposal, which provide evidence of its suitability for being deployed in practice.
2018-01-16
Conti, M., Gangwal, A..  2017.  Blocking intrusions at border using software defined-internet exchange point (SD-IXP). 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.

Servers in a network are typically assigned a static identity. Static assignment of identities is a cornerstone for adversaries in finding targets. Moving Target Defense (MTD) mutates the environment to increase unpredictability for an attacker. On another side, Software Defined Networks (SDN) facilitate a global view of a network through a central control point. The potential of SDN can not only make network management flexible and convenient, but it can also assist MTD to enhance attack surface obfuscation. In this paper, we propose an effective framework for the prevention, detection, and mitigation of flooding-based Denial of Service (DoS) attacks. Our framework includes a light-weight SDN assisted MTD strategy for network reconnaissance protection and an efficient approach for tackling DoS attacks using Software Defined-Internet Exchange Point (SD-IXP). To assess the effectiveness of the MTD strategy and DoS mitigation scheme, we set two different experiments. Our results confirm the effectiveness of our framework. With the MTD strategy in place, at maximum, barely 16% reconnaissance attempts were successful while the DoS attacks were accurately detected with false alarm rate as low as 7.1%.

Kansal, V., Dave, M..  2017.  DDoS attack isolation using moving target defense. 2017 International Conference on Computing, Communication and Automation (ICCCA). :511–514.

Among the several threats to cyber services Distributed denial-of-service (DDoS) attack is most prevailing nowadays. DDoS involves making an online service unavailable by flooding the bandwidth or resources of a targeted system. It is easier for an insider having legitimate access to the system to circumvent any security controls thus resulting in insider attack. To mitigate insider assisted DDoS attacks, this paper proposes a moving target defense mechanism that involves isolation of insiders from innocent clients by using attack proxies. Further using the concept of load balancing an effective algorithm to detect and handle insider attack is developed with the aim of maximizing attack isolation while minimizing the total number of proxies used.

Takabi, Hassan, Jafarian, J. Haadi.  2017.  Insider Threat Mitigation Using Moving Target Defense and Deception. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :93–96.

The insider threat has been subject of extensive study and many approaches from technical perspective to behavioral perspective and psychological perspective have been proposed to detect or mitigate it. However, it still remains one of the most difficult security issues to combat. In this paper, we propose an ongoing effort on developing a systematic framework to address insider threat challenges by laying a scientific foundation for defensive deception,leveraging moving target defense (MTD), an emerging technique for providing proactive security measurements, and integrating deception and MTD into attribute-based access control (ABAC).

2018-03-26
Algin, Ramazan, Tan, Huseyin O., Akkaya, Kemal.  2017.  Mitigating Selective Jamming Attacks in Smart Meter Data Collection Using Moving Target Defense. Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :1–8.

In Advanced Metering Infrastructure (AMI) networks, power data collections from smart meters are static. Due to such static nature, attackers may predict the transmission behavior of the smart meters which can be used to launch selective jamming attacks that can block the transmissions. To avoid such attack scenarios and increase the resilience of the AMI networks, in this paper, we propose dynamic data reporting schedules for smart meters based on the idea of moving target defense (MTD) paradigm. The idea behind MTD-based schedules is to randomize the transmission times so that the attackers will not be able to guess these schedules. Specifically, we assign a time slot for each smart meter and in each round we shuffle the slots with Fisher-Yates shuffle algorithm that has been shown to provide secure randomness. We also take into account the periodicity of the data transmissions that may be needed by the utility company. With the proposed approach, a smart meter is guaranteed to send its data at a different time slot in each round. We implemented the proposed approach in ns-3 using IEEE 802.11s wireless mesh standard as the communication infrastructure. Simulation results showed that our protocol can secure the network from the selective jamming attacks without sacrificing performance by providing similar or even better performance for collection time, packet delivery ratio and end-to-end delay compared to previously proposed protocols.

2018-01-16
Pappa, A. C., Ashok, A., Govindarasu, M..  2017.  Moving target defense for securing smart grid communications: Architecture, implementation evaluation. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Supervisory Control and Data Acquisition(SCADA) communications are often subjected to various sophisticated cyber-attacks mostly because of their static system characteristics, enabling an attacker for easier profiling of the target system(s) and thereby impacting the Critical Infrastructures(CI). In this Paper, a novel approach to mitigate such static vulnerabilities is proposed by implementing a Moving Target Defense (MTD) strategy in a power grid SCADA environment, leveraging the existing communication network with an end-to-end IP-Hopping technique among trusted peers. The main contribution involves the design and implementation of MTD Architecture on Iowa State's PowerCyber testbed for targeted cyber-attacks, without compromising the availability of a SCADA system and studying the delay and throughput characteristics for different hopping rates in a realistic environment. Finally, we study two cases and provide mitigations for potential weaknesses of the proposed mechanism. Also, we propose to incorporate port mutation to further increase attack complexity as part of future work.

2018-02-28
Chatfield, B., Haddad, R. J..  2017.  Moving Target Defense Intrusion Detection System for IPv6 based smart grid advanced metering infrastructure. SoutheastCon 2017. :1–7.

Conventional intrusion detection systems for smart grid communications rely heavily on static based attack detection techniques. In essence, signatures created from historical data are compared to incoming network traffic to identify abnormalities. In the case of attacks where no historical data exists, static based approaches become ineffective thus relinquishing system resilience and stability. Moving target defense (MTD) has shown to be effective in discouraging attackers by introducing system entropy to increase exploit costs. Increase in exploit cost leads to a decrease in profitability for an attacker. In this paper, a Moving Target Defense Intrusion Detection System (MTDIDS) is proposed for smart grid IPv6 based advanced metering infrastructure. The advantage of MTDIDS is the ability to detect anomalies across moving targets by means of planar keys thereupon increasing detection rate. Evaluation of MTDIDS was carried out in a smart grid advanced metering infrastructure simulated in MATLAB.

2018-02-06
Xiong, X., Yang, L..  2017.  Multi End-Hopping Modeling and Optimization Using Cooperative Game. 2017 4th International Conference on Information Science and Control Engineering (ICISCE). :470–474.

End-hopping is an effective component of Moving Target Defense (MTD) by randomly hopping network configuration of host, which is a game changing technique against cyber-attack and can interrupt cyber kill chain in the early stage. In this paper, a novel end-hopping model, Multi End-hopping (MEH), is proposed to exploit the full potentials of MTD techniques by hosts cooperating with others to share possible configurable space (PCS). And an optimization method based on cooperative game is presented to make hosts form optimal alliances against reconnaissance, scanning and blind probing DoS attack. Those model and method confuse adversaries by establishing alliances of hosts to enlarge their PCS, which thwarts various malicious scanning and mitigates probing DoS attack intensity. Through simulations, we validate the correctness of MEH model and the effectiveness of optimization method. Experiment results show that the proposed model and method increase system stable operational probability while introduces a low overhead in optimization.

2018-01-16
Nguyen, Thanh H., Wright, Mason, Wellman, Michael P., Baveja, Satinder.  2017.  Multi-Stage Attack Graph Security Games: Heuristic Strategies, with Empirical Game-Theoretic Analysis. Proceedings of the 2017 Workshop on Moving Target Defense. :87–97.

We study the problem of allocating limited security countermeasures to protect network data from cyber-attacks, for scenarios modeled by Bayesian attack graphs. We consider multi-stage interactions between a network administrator and cybercriminals, formulated as a security game. This formulation is capable of representing security environments with significant dynamics and uncertainty, and very large strategy spaces. For the game model, we propose parameterized heuristic strategies for both players. Our heuristics exploit the topological structure of the attack graphs and employ different sampling methodologies to overcome the computational complexity in determining players' actions. Given the complexity of the game, we employ a simulation-based methodology, and perform empirical game analysis over an enumerated set of these heuristic strategies. Finally, we conduct experiments based on a variety of game settings to demonstrate the advantages of our heuristics in obtaining effective defense strategies which are robust to the uncertainty of the security environment.

2018-03-26
Hu, Zhisheng, Zhu, Minghui, Liu, Peng.  2017.  Online Algorithms for Adaptive Cyber Defense on Bayesian Attack Graphs. Proceedings of the 2017 Workshop on Moving Target Defense. :99–109.

Emerging zero-day vulnerabilities in information and communications technology systems make cyber defenses very challenging. In particular, the defender faces uncertainties of; e.g., system states and the locations and the impacts of vulnerabilities. In this paper, we study the defense problem on a computer network that is modeled as a partially observable Markov decision process on a Bayesian attack graph. We propose online algorithms which allow the defender to identify effective defense policies when utility functions are unknown a priori. The algorithm performance is verified via numerical simulations based on real-world attacks.

2018-01-16
Ulrich, J., Drahos, J., Govindarasu, M..  2017.  A symmetric address translation approach for a network layer moving target defense to secure power grid networks. 2017 Resilience Week (RWS). :163–169.

This paper will suggest a robust method for a network layer Moving Target Defense (MTD) using symmetric packet scheduling rules. The MTD is implemented and tested on a Supervisory Control and Data Acquisition (SCADA) network testbed. This method is shown to be efficient while providing security benefits to the issues faced by the static nature of SCADA networks. The proposed method is an automated tool that may provide defense in depth when be used in conjunction with other MTDs and traditional security devices.

Zeitz, K., Cantrell, M., Marchany, R., Tront, J..  2017.  Designing a Micro-moving Target IPv6 Defense for the Internet of Things. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :179–184.

As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.

Martin, Vincentius, Cao, Qiang, Benson, Theophilus.  2017.  Fending off IoT-hunting Attacks at Home Networks. Proceedings of the 2Nd Workshop on Cloud-Assisted Networking. :67–72.

Many attacks target vulnerabilities of home IoT devices, such as bugs in outdated software and weak passwords. The home network is at a vantage point for deploying security appliances to deal with such IoT attacks. We propose a comprehensive home network defense, Pot2DPI, and use it to raise an attacker's uncertainty about devices and enable the home network to monitor traffic, detect anomalies, and filter malicious packets. The security offered by Pot2DPI comes from a synthesis of practical techniques: honeypot, deep packet inspection (DPI), and a realization of moving target defense (MTD) in port forwarding. In particular, Pot2DPI has a chain of honeypot and DPI that collects suspicious packet traces, acquires attack signatures, and installs filtering rules at a home router timely. Meanwhile, Pot2DPI shuffles the mapping of ports between the router and the devices connected to it, making a targeted attack difficult and defense more effective. Pot2DPI is our first step towards securing a smart home.