Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2020-07-16
Balduccini, Marcello, Griffor, Edward, Huth, Michael, Vishik, Claire, Wollman, David, Kamongi, Patrick.  2019.  Decision Support for Smart Grid: Using Reasoning to Contextualize Complex Decision Making. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—6.

The smart grid is a complex cyber-physical system (CPS) that poses challenges related to scale, integration, interoperability, processes, governance, and human elements. The US National Institute of Standards and Technology (NIST) and its government, university and industry collaborators, developed an approach, called CPS Framework, to reasoning about CPS across multiple levels of concern and competency, including trustworthiness, privacy, reliability, and regulatory. The approach uses ontology and reasoning techniques to achieve a greater understanding of the interdependencies among the elements of the CPS Framework model applied to use cases. This paper demonstrates that the approach extends naturally to automated and manual decision-making for smart grids: we apply it to smart grid use cases, and illustrate how it can be used to analyze grid topologies and address concerns about the smart grid. Smart grid stakeholders, whose decision making may be assisted by this approach, include planners, designers and operators.

2020-07-10
Cai, Zhipeng, Miao, Dongjing, Li, Yingshu.  2019.  Deletion Propagation for Multiple Key Preserving Conjunctive Queries: Approximations and Complexity. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :506—517.

This paper studies the deletion propagation problem in terms of minimizing view side-effect. It is a problem funda-mental to data lineage and quality management which could be a key step in analyzing view propagation and repairing data. The investigated problem is a variant of the standard deletion propagation problem, where given a source database D, a set of key preserving conjunctive queries Q, and the set of views V obtained by the queries in Q, we try to identify a set T of tuples from D whose elimination prevents all the tuples in a given set of deletions on views △V while preserving any other results. The complexity of this problem has been well studied for the case with only a single query. Dichotomies, even trichotomies, for different settings are developed. However, no results on multiple queries are given which is a more realistic case. We study the complexity and approximations of optimizing the side-effect on the views, i.e., find T to minimize the additional damage on V after removing all the tuples of △V. We focus on the class of key-preserving conjunctive queries which is a dichotomy for the single query case. It is surprising to find that except the single query case, this problem is NP-hard to approximate within any constant even for a non-trivial set of multiple project-free conjunctive queries in terms of view side-effect. The proposed algorithm shows that it can be approximated within a bound depending on the number of tuples of both V and △V. We identify a class of polynomial tractable inputs, and provide a dynamic programming algorithm to solve the problem. Besides data lineage, study on this problem could also provide important foundations for the computational issues in data repairing. Furthermore, we introduce some related applications of this problem, especially for query feedback based data cleaning.

2020-05-22
Wu, Boyang, Li, Hewu, Wu, Qian.  2019.  Extending Authentication Mechanism to Cooperate with Accountable Address Assignment. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1—7.

Lack of effective accountability mechanisms brings a series of security problems for Internet today. In Next Generation Internet based on IPv6, the system of identity authentication and IP verification is the key to accounting ability. Source Address Validation Improvement (SAVI) can protect IP source addresses from being faked. But without identity authentication mechanism and certain relationship between IP and accountable identity, the accountability is still unreliable. To solve this problem, most research focus on embedding accountable identity into IP address which need either changing DHCP client or twice DHCP request process due to the separate process of user authentication and address assignment. Different from previous research, this paper first analyzes the problems and requirements of combining Web Portal or 802.1X, two main identity authentication mechanism (AAA), with the accountable address assignment in SAVI frame-work. Then a novel Cooperative mechanism for Accountable IP address assignment (CAIP) is proposed based on 802.1X and SAVI, which takes into account the validation of IP address, the authenticity and accountability of identity at the same time. Finally, we build up prototype system for both Fat AP and Thin AP wireless scenarios and simulate the performance of CAIP through large-scale campus networks' data logs. The experiment result shows that the IP addresses and identities in CAIP are protective and accountable. Compared with other previous research, CAIP is not only transparent to the terminals and networks, but also low impact on network equipment, which makes CAIP easy deployment with high compatibility and low cost.

2020-10-16
Shayganmehr, Masoud, Montazer, Gholam Ali.  2019.  Identifying Indexes Affecting the Quality of E-Government Websites. 2019 5th International Conference on Web Research (ICWR). :167—171.

With the development of new technologies in the world, governments have tendency to make a communications with people and business with the help of such technologies. Electronic government (e-government) is defined as utilizing information technologies such as electronic networks, Internet and mobile phones by organizations and state institutions in order to making wide communication between citizens, business and different state institutions. Development of e-government starts with making website in order to share information with users and is considered as the main infrastructure for further development. Website assessment is considered as a way for improving service quality. Different international researches have introduced various indexes for website assessment, they only see some dimensions of website in their research. In this paper, the most important indexes for website quality assessment based on accurate review of previous studies are "Web design", "navigation", services", "maintenance and Support", "Citizens Participation", "Information Quality", "Privacy and Security", "Responsiveness", "Usability". Considering mentioned indexes in designing the website facilitates user interaction with the e-government websites.

2020-02-10
Alia, Mohammad A., Maria, Khulood Abu, Alsarayreh, Maher A., Maria, Eman Abu, Almanasra, Sally.  2019.  An Improved Video Steganography: Using Random Key-Dependent. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :234–237.

Steganography is defined as the art of hiding secret data in a non-secret digital carrier called cover media. Trading delicate data without assurance against intruders that may intrude on this data is a lethal. In this manner, transmitting delicate information and privileged insights must not rely on upon just the current communications channels insurance advancements. Likewise should make more strides towards information insurance. This article proposes an improved approach for video steganography. The improvement made by searching for exact matching between the secret text and the video frames RGB channels and Random Key -Dependent Data, achieving steganography performance criteria, invisibility, payload/capacity and robustness.

2020-11-20
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
2020-08-13
Li, Xincheng, Liu, Yali, Yin, Xinchun.  2019.  An Anonymous Conditional Privacy-Preserving Authentication Scheme for VANETs. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1763—1770.
Vehicular ad hoc networks (VANETs) have been growing rapidly because it can improve traffic safety and efficiency in transportation. In VANETs, messages are broadcast in wireless environment, which is vulnerable to be attacked in many ways. Accordingly, it is essential to authenticate the legitimation of vehicles to guarantee the performance of services. In this paper, we propose an anonymous conditional privacy-preserving authentication scheme based on message authentication code (MAC) for VANETs. With verifiable secret sharing (VSS), vehicles can obtain a group key for message generation and authentication after a mutual authentication phase. Security analysis and performance evaluation show that the proposed scheme satisfies basic security and privacy-preserving requirements and has a better performance compared with some existing schemes in terms of computational cost and communication overhead.
2020-01-06
Fan, Zexuan, Xu, Xiaolong.  2019.  APDPk-Means: A New Differential Privacy Clustering Algorithm Based on Arithmetic Progression Privacy Budget Allocation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1737–1742.
How to protect users' private data during network data mining has become a hot issue in the fields of big data and network information security. Most current researches on differential privacy k-means clustering algorithms focus on optimizing the selection of initial centroids. However, the traditional privacy budget allocation has the problem that the random noise becomes too large as the number of iterations increases, which will reduce the performance of data clustering. To solve the problem, we improved the way of privacy budget allocation in differentially private clustering algorithm DPk-means, and proposed APDPk-means, a new differential privacy clustering algorithm based on arithmetic progression privacy budget allocation. APDPk-means decomposes the total privacy budget into a decreasing arithmetic progression, allocating the privacy budgets from large to small in the iterative process, so as to ensure the rapid convergence in early iteration. The experiment results show that compared with the other differentially private k-means algorithms, APDPk-means has better performance in availability and quality of the clustering result under the same level of privacy protection.
2020-03-18
Wu, Chia-Feng, Ti, Yen-Wu, Kuo, Sy-Yen, Yu, Chia-Mu.  2019.  Benchmarking Dynamic Searchable Symmetric Encryption with Search Pattern Hiding. 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). :65–69.
Searchable symmetric encryption (SSE) is an important technique for cloud computing. SSE allows encrypted critical data stored on an untrusted cloud server to be searched using keywords, returning correct data, but the keywords and data content are unknown by the server. However, an SSE database is not practical because the data is generally frequently modified even when stored on a remote server, since the server cannot update the encrypted data without decryption. Dynamic searchable symmetric encryption (DSSE) is designed to support this requirement. DSSE allows adding or deleting encrypted data on the server without decryption. Many DSSE systems have been proposed, based on link-list structures or blind storage (a new primitive). Each has advantages and drawbacks regarding function, extensibility, and efficiency. For a real system, the most important aspect is the tradeoff between performance and security. Therefore, we implemented several DSSE systems to compare their efficiency and security, and identify the various disadvantages with a view to developing an improved system.
2020-09-21
Pedram, Ali Reza, Tanaka, Takashi, Hale, Matthew.  2019.  Bidirectional Information Flow and the Roles of Privacy Masks in Cloud-Based Control. 2019 IEEE Information Theory Workshop (ITW). :1–5.
We consider a cloud-based control architecture for a linear plant with Gaussian process noise, where the state of the plant contains a client's sensitive information. We assume that the cloud tries to estimate the state while executing a designated control algorithm. The mutual information between the client's actual state and the cloud's estimate is adopted as a measure of privacy loss. We discuss the necessity of uplink and downlink privacy masks. After observing that privacy is not necessarily a monotone function of the noise levels of privacy masks, we discuss the joint design procedure for uplink and downlink privacy masks. Finally, the trade-off between privacy and control performance is explored.
2020-08-28
Zobaed, S.M., ahmad, sahan, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  ClustCrypt: Privacy-Preserving Clustering of Unstructured Big Data in the Cloud. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :609—616.
Security and confidentiality of big data stored in the cloud are important concerns for many organizations to adopt cloud services. One common approach to address the concerns is client-side encryption where data is encrypted on the client machine before being stored in the cloud. Having encrypted data in the cloud, however, limits the ability of data clustering, which is a crucial part of many data analytics applications, such as search systems. To overcome the limitation, in this paper, we present an approach named ClustCrypt for efficient topic-based clustering of encrypted unstructured big data in the cloud. ClustCrypt dynamically estimates the optimal number of clusters based on the statistical characteristics of encrypted data. It also provides clustering approach for encrypted data. We deploy ClustCrypt within the context of a secure cloud-based semantic search system (S3BD). Experimental results obtained from evaluating ClustCrypt on three datasets demonstrate on average 60% improvement on clusters' coherency. ClustCrypt also decreases the search-time overhead by up to 78% and increases the accuracy of search results by up to 35%.
2020-02-17
Chowdhury, Mohammad Jabed Morshed, Colman, Alan, Kabir, Muhammad Ashad, Han, Jun, Sarda, Paul.  2019.  Continuous Authorization in Subject-Driven Data Sharing Using Wearable Devices. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :327–333.
Sharing personal data with other people or organizations over the web has become a common phenomena of our modern life. This type of sharing is usually managed by access control mechanisms that include access control model and policies. However, these models are designed from the organizational perspective and do not provide sufficient flexibility and control to the individuals. Therefore, individuals often cannot control sharing of their personal data based on their personal context. In addition, the existing context-aware access control models usually check contextual condition once at the beginning of the access and do not evaluate the context during an on-going access. Moreover, individuals do not have control to define how often they want to evaluate the context condition for an ongoing access. Wearable devices such as Fitbit and Apple Smart Watch have recently become increasingly popular. This has made it possible to gather an individual's real-time contextual information (e.g., location, blood-pressure etc.) which can be used to enforce continuous authorization to the individual's data resources. In this paper, we introduce a novel data sharing policy model for continuous authorization in subject-driven data sharing. A software prototype has been implemented employing a wearable device to demonstrate continuous authorization. Our continuous authorization framework provides more control to the individuals by enabling revocation of on-going access to shared data if the specified context condition becomes invalid.
2020-06-22
Lv, Chaoxian, Li, Qianmu, Long, Huaqiu, Ren, Yumei, Ling, Fei.  2019.  A Differential Privacy Random Forest Method of Privacy Protection in Cloud. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :470–475.
This paper proposes a new random forest classification algorithm based on differential privacy protection. In order to reduce the impact of differential privacy protection on the accuracy of random forest classification, a hybrid decision tree algorithm is proposed in this paper. The hybrid decision tree algorithm is applied to the construction of random forest, which balances the privacy and classification accuracy of the random forest algorithm based on differential privacy. Experiment results show that the random forest algorithm based on differential privacy can provide high privacy protection while ensuring high classification performance, achieving a balance between privacy and classification accuracy, and has practical application value.
2020-01-06
Mo, Ran, Liu, Jianfeng, Yu, Wentao, Jiang, Fu, Gu, Xin, Zhao, Xiaoshuai, Liu, Weirong, Peng, Jun.  2019.  A Differential Privacy-Based Protecting Data Preprocessing Method for Big Data Mining. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :693–699.

Analyzing clustering results may lead to the privacy disclosure issue in big data mining. In this paper, we put forward a differential privacy-based protecting data preprocessing method for distance-based clustering. Firstly, the data distortion technique differential privacy is used to prevent the distances in distance-based clustering from disclosing the relationships. Differential privacy may affect the clustering results while protecting privacy. Then an adaptive privacy budget parameter adjustment mechanism is applied for keeping the balance between the privacy protection and the clustering results. By solving the maximum and minimum problems, the differential privacy budget parameter can be obtained for different clustering algorithms. Finally, we conduct extensive experiments to evaluate the performance of our proposed method. The results demonstrate that our method can provide privacy protection with precise clustering results.

2020-10-19
Bao, Shihan, Lei, Ao, Cruickshank, Haitham, Sun, Zhili, Asuquo, Philip, Hathal, Waleed.  2019.  A Pseudonym Certificate Management Scheme Based on Blockchain for Internet of Vehicles. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :28–35.
Research into the established area of ITS is evolving into the Internet of Vehicles (IoV), itself a fast-moving research area, fuelled in part by rapid changes in computing and communication technologies. Using pseudonym certificate is a popular way to address privacy issues in IoV. Therefore, the certificate management scheme is considered as a feasible technique to manage system and maintain the lifecycle of certificate. In this paper, we propose an efficient pseudonym certificate management scheme in IoV. The Blockchain concept is introduced to simplify the network structure and distributed maintenance of the Certificate Revocation List (CRL). The proposed scheme embeds part of the certificate revocation functions within the security and privacy applications, aiming to reduce the communication overhead and shorten the processing time cost. Extensive simulations and analysis show the effectiveness and efficiency of the proposed scheme, in which the Blockchain structure costs fewer network resources and gives a more economic solution to against further cybercrime attacks.
2020-11-23
Jolfaei, A., Kant, K., Shafei, H..  2019.  Secure Data Streaming to Untrusted Road Side Units in Intelligent Transportation System. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :793–798.
The paper considers data security issues in vehicle-to-infrastructure communications, where vehicles stream data to a road side unit. We assume aggregated data in road side units can be stored or used for data analytics. In this environment, there are issues in regards to the scalability of key management and computation limitations at the edge of the network. To address these issues, we suggest the formation of groups in the vehicle layer, where a group leader is assigned to communicate with group devices and the road side unit. We propose a lightweight permutation mechanism for preserving the confidentiality of sensory data.
2020-01-27
Li, Zhangtan, Cheng, Liang, Zhang, Yang.  2019.  Tracking Sensitive Information and Operations in Integrated Clinical Environment. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :192–199.
Integrated Clinical Environment (ICE) is a standardized framework for achieving device interoperability in medical cyber-physical systems. The ICE utilizes high-level supervisory apps and a low-level communication middleware to coordinate medical devices. The need to design complex ICE systems that are both safe and effective has presented numerous challenges, including interoperability, context-aware intelligence, security and privacy. In this paper, we present a data flow analysis framework for the ICE systems. The framework performs the combination of static and dynamic analysis for the sensitive data and operations in the ICE systems. Our experiments demonstrate that the data flow analysis framework can record how the medical devices transmit sensitive data and perform misuse detection by tracing the runtime context of the sensitive operations.
2020-08-13
Cheng, Chen, Xiaoli, Liu, Linfeng, Wei, Longxin, Lin, Xiaofeng, Wu.  2019.  Algorithm for k-anonymity based on ball-tree and projection area density partition. 2019 14th International Conference on Computer Science Education (ICCSE). :972—975.

K-anonymity is a popular model used in microdata publishing to protect individual privacy. This paper introduces the idea of ball tree and projection area density partition into k-anonymity algorithm.The traditional kd-tree implements the division by forming a super-rectangular, but the super-rectangular has the area angle, so it cannot guarantee that the records on the corner are most similar to the records in this area. In this paper, the super-sphere formed by the ball-tree is used to address this problem. We adopt projection area density partition to increase the density of the resulting recorded points. We implement our algorithm with the Gotrack dataset and the Adult dataset in UCI. The experimentation shows that the k-anonymity algorithm based on ball-tree and projection area density partition, obtains more anonymous groups, and the generalization rate is lower. The smaller the K is, the more obvious the result advantage is. The result indicates that our algorithm can make data usability even higher.

Razaque, Abdul, Frej, Mohamed Ben Haj, Yiming, Huang, Shilin, Yan.  2019.  Analytical Evaluation of k–Anonymity Algorithm and Epsilon-Differential Privacy Mechanism in Cloud Computing Environment. 2019 IEEE Cloud Summit. :103—109.

Expected and unexpected risks in cloud computing, which included data security, data segregation, and the lack of control and knowledge, have led to some dilemmas in several fields. Among all of these dilemmas, the privacy problem is even more paramount, which has largely constrained the prevalence and development of cloud computing. There are several privacy protection algorithms proposed nowadays, which generally include two categories, Anonymity algorithm, and differential privacy mechanism. Since many types of research have already focused on the efficiency of the algorithms, few of them emphasized the different orientation and demerits between the two algorithms. Motivated by this emerging research challenge, we have conducted a comprehensive survey on the two popular privacy protection algorithms, namely K-Anonymity Algorithm and Differential Privacy Algorithm. Based on their principles, implementations, and algorithm orientations, we have done the evaluations of these two algorithms. Several expectations and comparisons are also conducted based on the current cloud computing privacy environment and its future requirements.

2020-07-09
Liu, Chuanyi, Han, Peiyi, Dong, Yingfei, Pan, Hezhong, Duan, Shaoming, Fang, Binxing.  2019.  CloudDLP: Transparent and Automatic Data Sanitization for Browser-Based Cloud Storage. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1—8.

Because cloud storage services have been broadly used in enterprises for online sharing and collaboration, sensitive information in images or documents may be easily leaked outside the trust enterprise on-premises due to such cloud services. Existing solutions to this problem have not fully explored the tradeoffs among application performance, service scalability, and user data privacy. Therefore, we propose CloudDLP, a generic approach for enterprises to automatically sanitize sensitive data in images and documents in browser-based cloud storage. To the best of our knowledge, CloudDLP is the first system that automatically and transparently detects and sanitizes both sensitive images and textual documents without compromising user experience or application functionality on browser-based cloud storage. To prevent sensitive information escaping from on-premises, CloudDLP utilizes deep learning methods to detect sensitive information in both images and textual documents. We have evaluated the proposed method on a number of typical cloud applications. Our experimental results show that it can achieve transparent and automatic data sanitization on the cloud storage services with relatively low overheads, while preserving most application functionalities.

2020-12-11
Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K. R..  2019.  Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :296—303.

The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.

2020-07-10
Podlesny, Nikolai J., Kayem, Anne V.D.M., Meinel, Christoph.  2019.  Identifying Data Exposure Across Distributed High-Dimensional Health Data Silos through Bayesian Networks Optimised by Multigrid and Manifold. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :556—563.

We present a novel, and use case agnostic method of identifying and circumventing private data exposure across distributed and high-dimensional data repositories. Examples of distributed high-dimensional data repositories include medical research and treatment data, where oftentimes more than 300 describing attributes appear. As such, providing strong guarantees of data anonymity in these repositories is a hard constraint in adhering to privacy legislation. Yet, when applied to distributed high-dimensional data, existing anonymisation algorithms incur high levels of information loss and do not guarantee privacy defeating the purpose of anonymisation. In this paper, we address this issue by using Bayesian networks to handle data transformation for anonymisation. By evaluating every attribute combination to determine the privacy exposure risk, the conditional probability linking attribute pairs is computed. Pairs with a high conditional probability expose the risk of deanonymisation similar to quasi-identifiers and can be separated instead of deleted, as in previous algorithms. Attribute separation removes the risk of privacy exposure, and deletion avoidance results in a significant reduction in information loss. In other words, assimilating the conditional probability of outliers directly in the adjacency matrix in a greedy fashion is quick and thwarts de-anonymisation. Since identifying every privacy violating attribute combination is a W[2]-complete problem, we optimise the procedure with a multigrid solver method by evaluating the conditional probabilities between attribute pairs, and aggregating state space explosion of attribute pairs through manifold learning. Finally, incremental processing of new data is achieved through inexpensive, continuous (delta) learning.

Xiao, Tianran, Tong, Wei, Lei, Xia, Liu, Jingning, Liu, Bo.  2019.  Per-File Secure Deletion for Flash-Based Solid State Drives. 2019 IEEE International Conference on Networking, Architecture and Storage (NAS). :1—8.

File update operations generate many invalid flash pages in Solid State Drives (SSDs) because of the-of-place update feature. If these invalid flash pages are not securely deleted, they will be left in the “missing” state, resulting in leakage of sensitive information. However, deleting these invalid pages in real time greatly reduces the performance of SSD. In this paper, we propose a Per-File Secure Deletion (PSD) scheme for SSD to achieve non-real-time secure deletion. PSD assigns a globally unique identifier (GUID) to each file to quickly locate the invalid data blocks and uses Security-TRIM command to securely delete these invalid data blocks. Moreover, we propose a PSD-MLC scheme for Multi-Level Cell (MLC) flash memory. PSD-MLC distributes the data blocks of a file in pairs of pages to avoid the influence of programming crosstalk between paired pages. We evaluate our schemes on different hardware platforms of flash media, and the results prove that PSD and PSD-MLC only have little impact on the performance of SSD. When the cache is disabled and enabled, compared with the system without the secure deletion, PSD decreases SSD throughput by 1.3% and 1.8%, respectively. PSD-MLC decreases SSD throughput by 9.5% and 10.0%, respectively.

2020-11-04
Zhang, J., Chen, J., Wu, D., Chen, B., Yu, S..  2019.  Poisoning Attack in Federated Learning using Generative Adversarial Nets. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :374—380.

Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.

2020-07-03
Zhang, Yonghong, Zheng, Peijia, Luo, Weiqi.  2019.  Privacy-Preserving Outsourcing Computation of QR Decomposition in the Encrypted Domain. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :389—396.

Signal processing in encrypted domain has become an important mean to protect privacy in an untrusted network environment. Due to the limitations of the underlying encryption methods, many useful algorithms that are sophisticated are not well implemented. Considering that QR decomposition is widely used in many fields, in this paper, we propose to implement QR decomposition in homomorphic encrypted domain. We firstly realize some necessary primitive operations in homomorphic encrypted domain, including division and open square operation. Gram-Schmidt process is then studied in the encrypted domain. We propose the implementation of QR decomposition in the encrypted domain by using the secure implementation of Gram-Schmidt process. We conduct experiments to demonstrate the effectiveness and analyze the performance of the proposed outsourced QR decomposition.