Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2020-09-21
Zhang, Xuejun, Chen, Qian, Peng, Xiaohui, Jiang, Xinlong.  2019.  Differential Privacy-Based Indoor Localization Privacy Protection in Edge Computing. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :491–496.

With the popularity of smart devices and the widespread use of the Wi-Fi-based indoor localization, edge computing is becoming the mainstream paradigm of processing massive sensing data to acquire indoor localization service. However, these data which were conveyed to train the localization model unintentionally contain some sensitive information of users/devices, and were released without any protection may cause serious privacy leakage. To solve this issue, we propose a lightweight differential privacy-preserving mechanism for the edge computing environment. We extend ε-differential privacy theory to a mature machine learning localization technology to achieve privacy protection while training the localization model. Experimental results on multiple real-world datasets show that, compared with the original localization technology without privacy-preserving, our proposed scheme can achieve high accuracy of indoor localization while providing differential privacy guarantee. Through regulating the value of ε, the data quality loss of our method can be controlled up to 8.9% and the time consumption can be almost negligible. Therefore, our scheme can be efficiently applied in the edge networks and provides some guidance on indoor localization privacy protection in the edge computing.

2020-04-17
Islam, Md. Jahidul, Mahin, Md., Roy, Shanto, Debnath, Biplab Chandra, Khatun, Ayesha.  2019.  DistBlackNet: A Distributed Secure Black SDN-IoT Architecture with NFV Implementation for Smart Cities. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1—6.

Internet of Things (IoT) is a key emerging technology which aims to connect objects over the internet. Software Defined Networking (SDN) is another new intelligent technology within networking domain which increases the network performance and provides better security, reliability, and privacy using dynamic software programs. In this paper, we have proposed a distributed secure Black SDN-IoT architecture with NFV implementation for smart cities. We have incorporated Black SDN that is highly secured SDN which gives better result in network performances, security, and privacy and secures both metadata and payload within each layer. This architecture also tried to introduce an approach which is more effective for building a cluster by means of Black SDN. Black SDN-loT with NFV concept brings benefits to the related fields in terms of energy savings and load balancing. Moreover, Multiple distributed controller have proposed to improve availability, integrity, privacy, confidentiality and etc. In the proposed architecture, the Black network provides higher security of each network layer comparative to the conventional network. Finally, this paper has discussed the architectural design of distributed secure Black SDN-IoT with NFV for smart cities and research challenges.

2020-06-04
Asiri, Somayah, Alzahrani, Ahmad A..  2019.  The Effectiveness of Mixed Reality Environment-Based Hand Gestures in Distributed Collaboration. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1—6.

Mixed reality (MR) technologies are widely used in distributed collaborative learning scenarios and have made learning and training more flexible and intuitive. However, there are many challenges in the use of MR due to the difficulty in creating a physical presence, particularly when a physical task is being performed collaboratively. We therefore developed a novel MR system to overcomes these limitations and enhance the distributed collaboration user experience. The primary objective of this paper is to explore the potential of a MR-based hand gestures system to enhance the conceptual architecture of MR in terms of both visualization and interaction in distributed collaboration. We propose a synchronous prototype named MRCollab as an immersive collaborative approach that allows two or more users to communicate with a peer based on the integration of several technologies such as video, audio, and hand gestures.

2020-01-28
Vaccaro, Michelle, Waldo, Jim.  2019.  The Effects of Mixing Machine Learning and Human Judgment. 17:Pages30:19–Pages30:40.

Collaboration between humans and machines does not necessarily lead to better outcomes.

2020-06-04
Shang, Jiacheng, Wu, Jie.  2019.  Enabling Secure Voice Input on Augmented Reality Headsets using Internal Body Voice. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1—9.

Voice-based input is usually used as the primary input method for augmented reality (AR) headsets due to immersive AR experience and good recognition performance. However, recent researches have shown that an attacker can inject inaudible voice commands to the devices that lack voice verification. Even if we secure voice input with voice verification techniques, an attacker can easily steal the victim's voice using low-cast handy recorders and replay it to voice-based applications. To defend against voice-spoofing attacks, AR headsets should be able to determine whether the voice is from the person who is using the AR headsets. Existing voice-spoofing defense systems are designed for smartphone platforms. Due to the special locations of microphones and loudspeakers on AR headsets, existing solutions are hard to be implemented on AR headsets. To address this challenge, in this paper, we propose a voice-spoofing defense system for AR headsets by leveraging both the internal body propagation and the air propagation of human voices. Experimental results show that our system can successfully accept normal users with average accuracy of 97% and defend against two types of attacks with average accuracy of at least 98%.

2020-02-17
Aranha, Helder, Masi, Massimiliano, Pavleska, Tanja, Sellitto, Giovanni Paolo.  2019.  Enabling Security-by-Design in Smart Grids: An Architecture-Based Approach. 2019 15th European Dependable Computing Conference (EDCC). :177–179.

Energy Distribution Grids are considered critical infrastructure, hence the Distribution System Operators (DSOs) have developed sophisticated engineering practices to improve their resilience. Over the last years, due to the "Smart Grid" evolution, this infrastructure has become a distributed system where prosumers (the consumers who produce and share surplus energy through the grid) can plug in distributed energy resources (DERs) and manage a bi-directional flow of data and power enabled by an advanced IT and control infrastructure. This introduces new challenges, as the prosumers possess neither the skills nor the knowledge to assess the risk or secure the environment from cyber-threats. We propose a simple and usable approach based on the Reference Model of Information Assurance & Security (RMIAS), to support the prosumers in the selection of cybesecurity measures. The purpose is to reduce the risk of being directly targeted and to establish collective responsibility among prosumers as grid gatekeepers. The framework moves from a simple risk analysis based on security goals to providing guidelines for the users for adoption of adequate security countermeasures. One of the greatest advantages of the approach is that it does not constrain the user to a specific threat model.

2020-02-10
Melo, Princess Marie B., Sison, Ariel M., Medina, Ruji P..  2019.  Enhanced TCP Sequence Number Steganography Using Dynamic Identifier. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). :482–485.

Network steganography is a branch of steganography that hides information through packet header manipulation and uses protocols as carriers to hide secret information. Many techniques were already developed using the Transmission Control Protocol (TCP) headers. Among the schemes in hiding information in the TCP header, the Initial Sequence Number (ISN) field is the most difficult to be detected since this field can have arbitrary values within the requirements of the standard. In this paper, a more undetectable scheme is proposed by increasing the complexity of hiding data in the TCP ISN using dynamic identifiers. The experimental results have shown that using Bayes Net, the proposed scheme outperforms the existing scheme with a low detection accuracy of 0.52%.

2020-10-26
Black, Paul, Gondal, Iqbal, Vamplew, Peter, Lakhotia, Arun.  2019.  Evolved Similarity Techniques in Malware Analysis. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :404–410.

Malware authors are known to reuse existing code, this development process results in software evolution and a sequence of versions of a malware family containing functions that show a divergence from the initial version. This paper proposes the term evolved similarity to account for this gradual divergence of similarity across the version history of a malware family. While existing techniques are able to match functions in different versions of malware, these techniques work best when the version changes are relatively small. This paper introduces the concept of evolved similarity and presents automated Evolved Similarity Techniques (EST). EST differs from existing malware function similarity techniques by focusing on the identification of significantly modified functions in adjacent malware versions and may also be used to identify function similarity in malware samples that differ by several versions. The challenge in identifying evolved malware function pairs lies in identifying features that are relatively invariant across evolved code. The research in this paper makes use of the function call graph to establish these features and then demonstrates the use of these techniques using Zeus malware.

2019-12-16
Zhu, Yan, Yang, Shuai, Chu, William Cheng-Chung, Feng, Rongquan.  2019.  FlashGhost: Data Sanitization with Privacy Protection Based on Frequent Colliding Hash Table. 2019 IEEE International Conference on Services Computing (SCC). :90–99.

Today's extensive use of Internet creates huge volumes of data by users in both client and server sides. Normally users don't want to store all the data in local as well as keep archive in the server. For some unwanted data, such as trash, cache and private data, needs to be deleted periodically. Explicit deletion could be applied to the local data, while it is a troublesome job. But there is no transparency to users on the personal data stored in the server. Since we have no knowledge of whether they're cached, copied and archived by the third parties, or sold by the service provider. Our research seeks to provide an automatic data sanitization system to make data could be self-destructing. Specifically, we give data a life cycle, which would be erased automatically when at the end of its life, and the destroyed data cannot be recovered by any effort. In this paper, we present FlashGhost, which is a system that meets this challenge through a novel integration of cryptography techniques with the frequent colliding hash table. In this system, data will be unreadable and rendered unrecoverable by overwriting multiple times after its validity period has expired. Besides, the system reliability is enhanced by threshold cryptography. We also present a mathematical model and verify it by a number of experiments, which demonstrate theoretically and experimentally our system is practical to use and meet the data auto-sanitization goal described above.

2019-11-12
Hu, Yayun, Li, Dongfang.  2019.  Formal Verification Technology for Asynchronous Communication Protocol. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :482-486.

For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.

2020-09-21
Ding, Hongfa, Peng, Changgen, Tian, Youliang, Xiang, Shuwen.  2019.  A Game Theoretical Analysis of Risk Adaptive Access Control for Privacy Preserving. 2019 International Conference on Networking and Network Applications (NaNA). :253–258.

More and more security and privacy issues are arising as new technologies, such as big data and cloud computing, are widely applied in nowadays. For decreasing the privacy breaches in access control system under opening and cross-domain environment. In this paper, we suggest a game and risk based access model for privacy preserving by employing Shannon information and game theory. After defining the notions of Privacy Risk and Privacy Violation Access, a high-level framework of game theoretical risk based access control is proposed. Further, we present formulas for estimating the risk value of access request and user, construct and analyze the game model of the proposed access control by using a multi-stage two player game. There exists sub-game perfect Nash equilibrium each stage in the risk based access control and it's suitable to protect the privacy by limiting the privacy violation access requests.

2020-02-17
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.

2020-04-17
You, Ruibang, Yuan, Zimu, Tu, Bibo, Cheng, Jie.  2019.  HP-SDDAN: High-Performance Software-Defined Data Access Network. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :849—856.

Recently, data protection has become increasingly important in cloud environments. The cloud platform has global user information, rich storage resource allocation information, and a fuller understanding of data attributes. At the same time, there is an urgent need for data access control to provide data security, and software-defined network, as a ready-made facility, has a global network view, global network management capabilities, and programable network rules. In this paper, we present an approach, named High-Performance Software-Defined Data Access Network (HP-SDDAN), providing software-defined data access network architecture, global data attribute management and attribute-based data access network. HP-SDDAN combines the excellent features of cloud platform and software-defined network, and fully considers the performance to implement software-defined data access network. In evaluation, we verify the effectiveness and efficiency of HP-SDDAN implementation, with only 1.46% overhead to achieve attribute-based data access control of attribute-based differential privacy.

2020-02-26
Kaur, Gaganjot, Gupta, Prinima.  2019.  Hybrid Approach for Detecting DDOS Attacks in Software Defined Networks. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–6.

In today's time Software Defined Network (SDN) gives the complete control to get the data flow in the network. SDN works as a central point to which data is administered centrally and traffic is also managed. SDN being open source product is more prone to security threats. The security policies are also to be enforced as it would otherwise let the controller be attacked the most. The attacks like DDOS and DOS attacks are more commonly found in SDN controller. DDOS is destructive attack that normally diverts the normal flow of traffic and starts the over flow of flooded packets halting the system. Machine Learning techniques helps to identify the hidden and unexpected pattern of the network and hence helps in analyzing the network flow. All the classified and unclassified techniques can help detect the malicious flow based on certain parameters like packet flow, time duration, accuracy and precision rate. Researchers have used Bayesian Network, Wavelets, Support Vector Machine and KNN to detect DDOS attacks. As per the review it's been analyzed that KNN produces better result as per the higher precision and giving a lower falser rate for detection. This paper produces better approach of hybrid Machine Learning techniques rather than existing KNN on the same data set giving more accuracy of detecting DDOS attacks on higher precision rate. The result of the traffic with both normal and abnormal behavior is shown and as per the result the proposed algorithm is designed which is suited for giving better approach than KNN and will be implemented later on for future.

2020-08-03
Yang, Xiaodong, Liu, Rui, Wang, Meiding, Chen, Guilan.  2019.  Identity-Based Aggregate Signature Scheme in Vehicle Ad-hoc Network. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1046–10463.

Vehicle ad-hoc network (VANET) is the main driving force to alleviate traffic congestion and accelerate the construction of intelligent transportation. However, the rapid growth of the number of vehicles makes the construction of the safety system of the vehicle network facing multiple tests. This paper proposes an identity-based aggregate signature scheme to protect the privacy of vehicle identity, receive messages in time and authenticate quickly in VANET. The scheme uses aggregate signature algorithm to aggregate the signatures of multiple users into one signature, and joins the idea of batch authentication to complete the authentication of multiple vehicular units, thereby improving the verification efficiency. In addition, the pseudoidentity of vehicles is used to achieve the purpose of vehicle anonymity and privacy protection. Finally, the secure storage of message signatures is effectively realized by using reliable cloud storage technology. Compared with similar schemes, this paper improves authentication efficiency while ensuring security, and has lower storage overhead.

2020-01-07
Aparna, H., Bhoomija, Faustina, Devi, R. Santhiya, Thenmozhi, K., Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Image Encryption Based on Quantum-Assisted DNA Coded System. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1-4.

Information security is winding up noticeably more vital in information stockpiling and transmission. Images are generally utilised for various purposes. As a result, the protection of image from the unauthorised client is critical. Established encryption techniques are not ready to give a secure framework. To defeat this, image encryption is finished through DNA encoding which is additionally included with confused 1D and 2D logistic maps. The key communication is done through the quantum channel using the BB84 protocol. To recover the encrypted image DNA decoding is performed. Since DNA encryption is invertible, decoding can be effectively done through DNA subtraction. It decreases the complexity and furthermore gives more strength when contrasted with traditional encryption plans. The enhanced strength of the framework is measured utilising measurements like NPCR, UACI, Correlation and Entropy.

2020-04-20
Yuan, Jing, Ou, Yuyi, Gu, Guosheng.  2019.  An Improved Privacy Protection Method Based on k-degree Anonymity in Social Network. 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :416–420.

To preserve the privacy of social networks, most existing methods are applied to satisfy different anonymity models, but there are some serious problems such as huge large information losses and great structural modifications of original social network. Therefore, an improved privacy protection method called k-subgraph is proposed, which is based on k-degree anonymous graph derived from k-anonymity to keep the network structure stable. The method firstly divides network nodes into several clusters by label propagation algorithm, and then reconstructs the sub-graph by means of moving edges to achieve k-degree anonymity. Experimental results show that our k-subgraph method can not only effectively improve the defense capability against malicious attacks based on node degrees, but also maintain stability of network structure. In addition, the cost of information losses due to anonymity is minimized ideally.

Takbiri, Nazanin, Shao, Xiaozhe, Gao, Lixin, Pishro-Nik, Hossein.  2019.  Improving Privacy in Graphs Through Node Addition. 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :487–494.

The rapid growth of computer systems which generate graph data necessitates employing privacy-preserving mechanisms to protect users' identity. Since structure-based de-anonymization attacks can reveal users' identity's even when the graph is simply anonymized by employing naïve ID removal, recently, k- anonymity is proposed to secure users' privacy against the structure-based attack. Most of the work ensured graph privacy using fake edges, however, in some applications, edge addition or deletion might cause a significant change to the key property of the graph. Motivated by this fact, in this paper, we introduce a novel method which ensures privacy by adding fake nodes to the graph. First, we present a novel model which provides k- anonymity against one of the strongest attacks: seed-based attack. In this attack, the adversary knows the partial mapping between the main graph and the graph which is generated using the privacy-preserving mechanisms. We show that even if the adversary knows the mapping of all of the nodes except one, the last node can still have k- anonymity privacy. Then, we turn our attention to the privacy of the graphs generated by inter-domain routing against degree attacks in which the degree sequence of the graph is known to the adversary. To ensure the privacy of networks against this attack, we propose a novel method which tries to add fake nodes in a way that the degree of all nodes have the same expected value.

2020-01-06
Li, Xianxian, Luo, Chunfeng, Liu, Peng, Wang, Li-e.  2019.  Information Entropy Differential Privacy: A Differential Privacy Protection Data Method Based on Rough Set Theory. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :918–923.

Data have become an important asset for analysis and behavioral prediction, especially correlations between data. Privacy protection has aroused academic and social concern given the amount of personal sensitive information involved in data. However, existing works assume that the records are independent of each other, which is unsuitable for associated data. Many studies either fail to achieve privacy protection or lead to excessive loss of information while applying data correlations. Differential privacy, which achieves privacy protection by injecting random noise into the statistical results given the correlation, will improve the background knowledge of adversaries. Therefore, this paper proposes an information entropy differential privacy solution for correlation data privacy issues based on rough set theory. Under the solution, we use rough set theory to measure the degree of association between attributes and use information entropy to quantify the sensitivity of the attribute. The information entropy difference privacy is achieved by clustering based on the correlation and adding personalized noise to each cluster while preserving the correlations between data. Experiments show that our algorithm can effectively preserve the correlation between the attributes while protecting privacy.

2020-03-04
Korzhik, Valery, Starostin, Vladimir, Morales-Luna, Guillermo, Kabardov, Muaed, Gerasimovich, Aleksandr, Yakovlev, Victor, Zhuvikin, Aleksey.  2019.  Information Theoretical Secure Key Sharing Protocol for Noiseless Public Constant Parameter Channels without Cryptographic Assumptions. 2019 Federated Conference on Computer Science and Information Systems (FedCSIS). :327–332.

We propose a new key sharing protocol executed through any constant parameter noiseless public channel (as Internet itself) without any cryptographic assumptions and protocol restrictions on SNR in the eavesdropper channels. This protocol is based on extraction by legitimate users of eigenvalues from randomly generated matrices. A similar protocol was proposed recently by G. Qin and Z. Ding. But we prove that, in fact, this protocol is insecure and we modify it to be both reliable and secure using artificial noise and privacy amplification procedure. Results of simulation prove these statements.

2020-04-17
Nair, Harsha, Sridaran, R..  2019.  An Innovative Model (HS) to Enhance the Security in Windows Operating System - A Case Study. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :1207—1211.

Confidentiality, authentication, privacy and integrity are the pillars of securing data. The most generic way of providing security is setting up passwords and usernames collectively known as login credentials. Operating systems use different techniques to ensure security of login credentials yet brute force attacks and dictionary attacks along with various other types which leads to success in passing or cracking passwords.The objective of proposed HS model is to enhance the protection of SAM file used by Windows Registry so that the system is preserved from intruders.

2019-10-02
Damghani, H., Hosseinian, H., Damghani, L..  2019.  Investigating Attacks to Improve Security and Privacy in RFID Systems Using the Security Bit Method. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). :833–838.

The RFID technology is now widely used and combined with everyday life. RFID Tag is a wireless device used to identify individuals and objects, in fact, it is a combination of the chip and antenna that sends the necessary information to an RFID Reader. On the other hand, an RFID Reader converts received radio waves into digital information and then provides facilities such as sending data to the computer and processing them. Radio frequency identification is a comprehensive processing technology that has led to a revolution in industry and medicine as an alternative to commercial barcodes. RFID Tag is used to tracking commodities and personal assets in the chain stores and even the human body and medical science. However, security and privacy problems have not yet been solved satisfactorily. There are many technical and economic challenges in this direction. In this paper, some of the latest technical research on privacy and security problems has been investigated in radio-frequency identification and security bit method, and it has been shown that in order to achieve this level of individual security, multiple technologies of RFID security development should combine with each other. These solutions should be cheap, efficient, reliable, flexible and long-term.

2020-04-24
Bellec, Q., le Claire, J.C., Benkhoris, M.F., Coulibaly, P..  2019.  Investigation of time delay effects on the current in a power converter regulated by Phase-Shift Self-Oscillating Current Controller. 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). :P.1–P.10.

This paper deals with effects of current sensor bandwidth and time delays in a system controlled by a Phase-Shift Self-Oscillating Current Controller (PSSOCC). The robustness of this current controller has been proved in former works showing its good performances in a large range of applications including AC/DC and DC/AC converters, power factor correction, active filters, isolation amplifiers and motor control. As switching frequencies can be upper than 30kHz, time delays and bandwidth limitations cannot be neglected in comparison with former works on this robust current controller. Thus, several models are proposed in this paper to analyze system behaviours. Those models permit to find analytical expressions binding maximum oscillation frequency with time delay and/or additional filter parameters. Through current spectrums analysis, quality of analytical expressions is proved for each model presented in this work. An experimental approach shows that every element of the electronic board having a low-pass effect or delaying command signals need to be included in the model in order to have a perfect match between calculations, simulations and practical results.

2019-11-25
Cui, Hongyan, Chen, Zunming, Xi, Yu, Chen, Hao, Hao, Jiawang.  2019.  IoT Data Management and Lineage Traceability: A Blockchain-based Solution. 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops). :239–244.

The Internet of Things is stepping out of its infancy into full maturity, requiring massive data processing and storage. Unfortunately, because of the unique characteristics of resource constraints, short-range communication, and self-organization in IoT, it always resorts to the cloud or fog nodes for outsourced computation and storage, which has brought about a series of novel challenging security and privacy threats. For this reason, one of the critical challenges of having numerous IoT devices is the capacity to manage them and their data. A specific concern is from which devices or Edge clouds to accept join requests or interaction requests. This paper discusses a design concept for developing the IoT data management platform, along with a data management and lineage traceability implementation of the platform based on blockchain and smart contracts, which approaches the two major challenges: how to implement effective data management and enrich rational interoperability for trusted groups of linked Things; And how to settle conflicts between untrusted IoT devices and its requests taking into account security and privacy preserving. Experimental results show that the system scales well with the loss of computing and communication performance maintaining within the acceptable range, works well to effectively defend against unauthorized access and empower data provenance and transparency, which verifies the feasibility and efficiency of the design concept to provide privacy, fine-grained, and integrity data management over the IoT devices by introducing the blockchain-based data management platform.

2020-02-26
Tychalas, Dimitrios, Keliris, Anastasis, Maniatakos, Michail.  2019.  LED Alert: Supply Chain Threats for Stealthy Data Exfiltration in Industrial Control Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :194–199.

Industrial Internet-of-Things has been touted as the next revolution in the industrial domain, offering interconnectivity, independence, real-time operation, and self-optimization. Integration of smart systems, however, bridges the gap between information and operation technology, creating new avenues for attacks from the cyber domain. The dismantling of this air-gap, in conjunction with the devices' long lifespan -in the range of 20-30 years-, motivates us to bring the attention of the community to emerging advanced persistent threats. We demonstrate a threat that bridges the air-gap by leaking data from memory to analog peripherals through Direct Memory Access (DMA), delivered as a firmware modification through the supply chain. The attack automatically adapts to a target device by leveraging the Device Tree and resides solely in the peripherals, completely transparent to the main CPU, by judiciously short-circuiting specific components. We implement this attack on a commercial Programmable Logic Controller, leaking information over the available LEDs. We evaluate the presented attack vector in terms of stealthiness, and demonstrate no observable overhead on both CPU performance and DMA transfer speed. Since traditional anomaly detection techniques would fail to detect this firmware trojan, this work highlights the need for industrial control system-appropriate techniques that can be applied promptly to installed devices.