Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2023-03-17
Zheng, Cuifang, Wu, Jiaju, Kong, Linggang, Kang, Shijia, Cheng, Zheng, Luo, Bin.  2022.  The Research on Material Properties Database System Based on Network Sharing. 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1163–1168.
Based on the analysis of material performance data management requirements, a network-sharing scheme of material performance data is proposed. A material performance database system including material performance data collection, data query, data analysis, data visualization, data security management and control modules is designed to solve the problems of existing material performance database network sharing, data fusion and multidisciplinary support, and intelligent services Inadequate standardization and data security control. This paper adopts hierarchical access control strategy. After logging into the material performance database system, users can standardize the material performance data and store them to form a shared material performance database. The standardized material performance data of the database system shall be queried and shared under control according to the authority. Then, the database system compares and analyzes the material performance data obtained from controlled query sharing. Finally, the database system visualizes the shared results of controlled queries and the comparative analysis results obtained. The database system adopts the MVC architecture based on B/S (client/server) cross platform J2EE. The Third-party computing platforms are integrated in System. Users can easily use material performance data and related services through browsers and networks. MongoDB database is used for data storage, supporting distributed storage and efficient query.
2023-04-14
Shao, Rulin, Shi, Zhouxing, Yi, Jinfeng, Chen, Pin-Yu, Hsieh, Cho-Jui.  2022.  Robust Text CAPTCHAs Using Adversarial Examples. 2022 IEEE International Conference on Big Data (Big Data). :1495–1504.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with font and background images respectively sampled from font and image libraries, and they are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we utilize a highly transferable adversarial attack designed for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, as well as various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarially trained CAPTCHA solvers and solvers trained with collected RTCs using manual annotation. Codes available at https://github.com/RulinShao/RTC.
2023-06-22
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

2023-09-08
Deng, Wei, Liu, Wei, Liu, Xinlin, Zhang, Jian.  2022.  Security Classification of Mobile Intelligent Terminal Based on Multi-source Data Fusion. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). :427–430.
The application of mobile intelligent terminal in the environment is very complex, and its own computing capacity is also very limited, so it is vulnerable to malicious attacks. The security classification of mobile intelligent terminals can effectively ensure the security of their use. Therefore, a security classification method for mobile intelligent terminals based on multi-source data fusion is proposed. The Boolean value is used to count the multi-source data of the mobile intelligent terminal, and the word frequency method is used to calculate the weight of the multi-source data of the mobile intelligent terminal. The D-S evidence theory is used to complete the multi-source data fusion of the mobile intelligent terminal and implement the multi-source data fusion processing of the mobile intelligent terminal. On this basis, the security level permission value of mobile intelligent terminal is calculated to achieve the security level division of mobile intelligent terminal based on multi-source data fusion. The experimental results show that the accuracy of mobile intelligent terminal security classification is higher than 96% and the classification time is less than 3.8 ms after the application of the proposed method. Therefore, the security level of mobile intelligent terminals after the application of this method is high, and the security performance of mobile intelligent terminals is strong, which can effectively improve the accuracy of security classification and shorten the time of security classification.
2023-06-22
Hu, Fanliang, Ni, Feng.  2022.  Software Implementation of AES-128: Side Channel Attacks Based on Power Traces Decomposition. 2022 International Conference on Cyber Warfare and Security (ICCWS). :14–21.
Side Channel Attacks (SCAs), an attack that exploits the physical information generated when an encryption algorithm is executed on a device to recover the key, has become one of the key threats to the security of encrypted devices. Recently, with the development of deep learning, deep learning techniques have been applied to SCAs with good results on publicly available dataset experiences. In this paper, we propose a power traces decomposition method that divides the original power traces into two parts, where the data-influenced part is defined as data power traces (Tdata) and the other part is defined as device constant power traces, and use the Tdata for training the network model, which has more obvious advantages than using the original power traces for training the network model. To verify the effectiveness of the approach, we evaluated the ATXmega128D4 microcontroller by capturing the power traces generated when implementing AES-128. Experimental results show that network models trained using Tdata outperform network models trained using raw power traces (Traw ) in terms of classification accuracy, training time, cross-subkey recovery key, and cross-device recovery key.
2023-05-12
Zhang, Tong, Cui, Xiangjie, Wang, Yichuan, Du, Yanning, Gao, Wen.  2022.  TCS Security Analysis in Intel SGX Enclave MultiThreading. 2022 International Conference on Networking and Network Applications (NaNA). :276–281.

With the rapid development of Internet Technology in recent years, the demand for security support for complex applications is becoming stronger and stronger. Intel Software Guard Extensions (Intel SGX) is created as an extension of Intel Systems to enhance software security. Intel SGX allows application developers to create so-called enclave. Sensitive application code and data are encapsulated in Trusted Execution Environment (TEE) by enclave. TEE is completely isolated from other applications, operating systems, and administrative programs. Enclave is the core structure of Intel SGX Technology. Enclave supports multi-threading. Thread Control Structure (TCS) stores special information for restoring enclave threads when entering or exiting enclave. Each execution thread in enclave is associated with a TCS. This paper analyzes and verifies the possible security risks of enclave under concurrent conditions. It is found that in the case of multithread concurrency, a single enclave cannot resist flooding attacks, and related threads also throw TCS exception codes.

2023-09-01
She, Cairui, Chen, Liwei, Shi, Gang.  2022.  TFCFI:Transparent Forward Fine-grained Control-Flow Integrity Protection. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :407—414.
Code-reuse attacks (including ROP/JOP) severely threaten computer security. Control-flow integrity (CFI), which can restrict control flow in legal scope, is recognised as an effective defence mechanism against code-reuse attacks. Hardware-based CFI uses Instruction Set Architecture (ISA) extensions with additional hardware modules to implement CFI and achieve better performance. However, hardware-based fine-grained CFI adds new instructions to the ISA, which can not be executed on old processors and breaks the compatibility of programs. Some coarse-grained CFI designs, such as Intel IBT, maintain the compatibility of programs but can not provide enough security guarantees.To balance the security and compatibility of hardware CFI, we propose Transparent Forward CFI (TFCFI). TFCFI implements hardware-based fine-grained CFI designs without changing the ISA. The software modification of TFCFI utilizes address information and hint instructions in RISC-V as transparent labels to mark the program. The hardware module of TFCFI monitors the control flow during execution. The program modified by TFCFI can be executed on old processors without TFCFI. Benefiting from transparent labels, TFCFI also solves the destination equivalence problem. The experiment on FPGA shows that TFCFI incurs negligible performance overhead (1.82% on average).
2023-04-28
Sun, Xiaohan, Zhang, Yanju, Huang, Xiaobin, Wang, Fangzhou, Mo, Zugang.  2022.  Vehicle Violation Detection System Based on Improved YOLOv5 Algorithm. 2022 18th International Conference on Computational Intelligence and Security (CIS). :148–152.
This paper proposes a vehicle violation determination system based on improved YOLOv5 algorithm, which performs vehicle violation determination on a single unit at a single intersection, and displays illegal photos and license plates of illegal vehicles on the webpage. Using the network structure of YOLOv5, modifying the vector output of the Head module, and modifying the rectangular frame detection of the target object to quadrilateral detection, the system can identify vehicles and lane lines with more flexibilities.
2023-03-17
Gharpure, Nisha, Rai, Aradhana.  2022.  Vulnerabilities and Threat Management in Relational Database Management Systems. 2022 5th International Conference on Advances in Science and Technology (ICAST). :369–374.
Databases are at the heart of modern applications and any threats to them can seriously endanger the safety and functionality of applications relying on the services offered by a DBMS. It is therefore pertinent to identify key risks to the secure operation of a database system. This paper identifies the key risks, namely, SQL injection, weak audit trails, access management issues and issues with encryption. A malicious actor can get help from any of these issues. It can compromise integrity, availability and confidentiality of the data present in database systems. The paper also identifies various means and ways to defend against these issues and remedy them. This paper then proceeds to identify from the literature, the potential solutions to these ameliorate the threat from these vulnerabilities. It proposes the usage of encryption to protect the data from being breached and leveraging encrypted databases such as CryptoDB. Better access control norms are suggested to prevent unauthorized access, modification and deletion of the data. The paper also recommends ways to prevent SQL injection attacks through techniques such as prepared statements.
2023-07-13
Wu, Yuhao, Wang, Yujie, Zhai, Shixuan, Li, Zihan, Li, Ao, Wang, Jinwen, Zhang, Ning.  2022.  Work-in-Progress: Measuring Security Protection in Real-time Embedded Firmware. 2022 IEEE Real-Time Systems Symposium (RTSS). :495–498.
The proliferation of real-time cyber-physical systems (CPS) is making profound changes to our daily life. Many real-time CPSs are security and safety-critical because of their continuous interactions with the physical world. While the general perception is that the security protection mechanism deployment is often absent in real-time embedded systems, there is no existing empirical study that measures the adoption of these mechanisms in the ecosystem. To bridge this gap, we conduct a measurement study for real-time embedded firmware from both a security perspective and a real-time perspective. To begin with, we collected more than 16 terabytes of embedded firmware and sampled 1,000 of them for the study. Then, we analyzed the adoption of security protection mechanisms and their potential impacts on the timeliness of real-time embedded systems. Besides, we measured the scheduling algorithms supported by real-time embedded systems since they are also security-critical.
ISSN: 2576-3172
2023-01-05
Sravani, T., Suguna, M.Raja.  2022.  Comparative Analysis Of Crime Hotspot Detection And Prediction Using Convolutional Neural Network Over Support Vector Machine with Engineered Spatial Features Towards Increase in Classifier Accuracy. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
The major aim of the study is to predict the type of crime that is going to happen based on the crime hotspot detected for the given crime data with engineered spatial features. crime dataset is filtered to have the following 2 crime categories: crime against society, crime against person. Crime hotspots are detected by using the Novel Hierarchical density based Spatial Clustering of Application with Noise (HDBSCAN) Algorithm with the number of clusters optimized using silhouette score. The sample data consists of 501 crime incidents. Future types of crime for the given location are predicted by using the Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms (N=5). The accuracy of crime prediction using Support Vector Machine classification algorithm is 94.01% and Convolutional Neural Network algorithm is 79.98% with the significance p-value of 0.033. The Support Vector Machine algorithm is significantly better in accuracy for prediction of type of crime than Convolutional Neural Network (CNN).
2023-02-03
Sultana, Habiba, Kamal, A H M.  2022.  An Edge Detection Based Reversible Data Hiding Scheme. 2022 IEEE Delhi Section Conference (DELCON). :1–6.

Edge detection based embedding techniques are famous for data security and image quality preservation. These techniques use diverse edge detectors to classify edge and non-edge pixels in an image and then implant secrets in one or both of these classes. Image with conceived data is called stego image. It is noticeable that none of such researches tries to reform the original image from the stego one. Rather, they devote their concentration to extract the hidden message only. This research presents a solution to the raised reversibility problem. Like the others, our research, first, applies an edge detector e.g., canny, in a cover image. The scheme next collects \$n\$-LSBs of each of edge pixels and finally, concatenates them with encrypted message stream. This method applies a lossless compression algorithm to that processed stream. Compression factor is taken such a way that the length of compressed stream does not exceed the length of collected LSBs. The compressed message stream is then implanted only in the edge pixels by \$n\$-LSB substitution method. As the scheme does not destroy the originality of non-edge pixels, it presents better stego quality. By incorporation the mechanisms of encryption, concatenation, compression and \$n\$-LSB, the method has enriched the security of implanted data. The research shows its effectiveness while implanting a small sized message.

Rout, Sonali, Mohapatra, Ramesh Kumar.  2022.  Hiding Sensitive Information in Surveillance Video without Affecting Nefarious Activity Detection. 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). :1–6.
Protection of private and sensitive information is the most alarming issue for security providers in surveillance videos. So to provide privacy as well as to enhance secrecy in surveillance video without affecting its efficiency in detection of violent activities is a challenging task. Here a steganography based algorithm has been proposed which hides private information inside the surveillance video without affecting its accuracy in criminal activity detection. Preprocessing of the surveillance video has been performed using Tunable Q-factor Wavelet Transform (TQWT), secret data has been hidden using Discrete Wavelet Transform (DWT) and after adding payload to the surveillance video, detection of criminal activities has been conducted with maintaining same accuracy as original surveillance video. UCF-crime dataset has been used to validate the proposed framework. Feature extraction is performed and after feature selection it has been trained to Temporal Convolutional Network (TCN) for detection. Performance measure has been compared to the state-of-the-art methods which shows that application of steganography does not affect the detection rate while preserving the perceptual quality of the surveillance video.
ISSN: 2640-5768
2023-01-05
Kumar, Marri Ranjith, K.Malathi, Prof..  2022.  An Innovative Method in Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing Decision Tree with Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Classifying and predicting the accuracy of intrusion detection on cybercrime by comparing machine learning methods such as Innovative Decision Tree (DT) with Support Vector Machine (SVM). By comparing the Decision Tree (N=20) and the Support Vector Machine algorithm (N=20) two classes of machine learning classifiers were used to determine the accuracy. The decision Tree (99.19%) has the highest accuracy than the SVM (98.5615%) and the independent T-test was carried out (=.507) and shows that it is statistically insignificant (p\textgreater0.05) with a confidence value of 95%. by comparing Innovative Decision Tree and Support Vector Machine. The Decision Tree is more productive than the Support Vector Machine for recognizing intruders with substantially checked, according to the significant analysis.
Kumar, Marri Ranjith, Malathi, K..  2022.  An Innovative Method in Improving the accuracy in Intrusion detection by comparing Random Forest over Support Vector Machine. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—6.
Improving the accuracy of intruders in innovative Intrusion detection by comparing Machine Learning classifiers such as Random Forest (RF) with Support Vector Machine (SVM). Two groups of supervised Machine Learning algorithms acquire perfection by looking at the Random Forest calculation (N=20) with the Support Vector Machine calculation (N=20)G power value is 0.8. Random Forest (99.3198%) has the highest accuracy than the SVM (9S.56l5%) and the independent T-test was carried out (=0.507) and shows that it is statistically insignificant (p \textgreater0.05) with a confidence value of 95% by comparing RF and SVM. Conclusion: The comparative examination displays that the Random Forest is more productive than the Support Vector Machine for identifying the intruders are significantly tested.
2023-03-17
Kamil, Samar, Siti Norul, Huda Sheikh Abdullah, Firdaus, Ahmad, Usman, Opeyemi Lateef.  2022.  The Rise of Ransomware: A Review of Attacks, Detection Techniques, and Future Challenges. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–7.
Cybersecurity is important in the field of information technology. One most recent pressing issue is information security. When we think of cybersecurity, the first thing that comes to mind is cyber-attacks, which are on the rise, such as Ransomware. Various governments and businesses take a variety of measures to combat cybercrime. People are still concerned about ransomware, despite numerous cybersecurity precautions. In ransomware, the attacker encrypts the victim’s files/data and demands payment to unlock the data. Cybersecurity is a collection of tools, regulations, security guards, security ideas, guidelines, risk management, activities, training, insurance, best practices, and technology used to secure the cyber environment, organization, and user assets. This paper analyses ransomware attacks, techniques for dealing with these attacks, and future challenges.
2022-12-02
Choi, Jong-Young, Park, Jiwoong, Lim, Sung-Hwa, Ko, Young-Bae.  2022.  A RSSI-Based Mesh Routing Protocol based IEEE 802.11p/WAVE for Smart Pole Networks. 2022 24th International Conference on Advanced Communication Technology (ICACT). :1—5.
This paper proposes a RSSI-based routing protocol for smart pole mesh networks equipped with multiple IEEE 802.11p/WAVE radios. In the IEEE 802.11p based multi-radio multi-channel environments, the performance of traditional mesh routing protocols is severely degraded because of metric measurement overhead. The periodic probe messages for measuring the quality of each channel incurs a large overhead due to the channel switching delay. To solve such an overhead problem, we introduce a routing metric that estimates expected transmission time and proposes a light-weight channel allocation algorithm based on RSSI value only. We evaluate the performance of the proposed solution through simulation experiments with NS-3. Simulation results show that it can improve the network performance in terms of latency and throughput, compared to the legacy WCETT routing scheme.
2023-02-24
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
2022-12-06
Kiran, Usha.  2022.  IDS To Detect Worst Parent Selection Attack In RPL-Based IoT Network. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :769-773.

The most widely used protocol for routing across the 6LoWPAN stack is the Routing Protocol for Low Power and Lossy (RPL) Network. However, the RPL lacks adequate security solutions, resulting in numerous internal and external security vulnerabilities. There is still much research work left to uncover RPL's shortcomings. As a result, we first implement the worst parent selection (WPS) attack in this paper. Second, we offer an intrusion detection system (IDS) to identify the WPS attack. The WPS attack modifies the victim node's objective function, causing it to choose the worst node as its preferred parent. Consequently, the network does not achieve optimal convergence, and nodes form the loop; a lower rank node selects a higher rank node as a parent, effectively isolating many nodes from the network. In addition, we propose DWA-IDS as an IDS for detecting WPS attacks. We use the Contiki-cooja simulator for simulation purposes. According to the simulation results, the WPS attack reduces system performance by increasing packet transmission time. The DWA-IDS simulation results show that our IDS detects all malicious nodes that launch the WPS attack. The true positive rate of the proposed DWA-IDS is more than 95%, and the detection rate is 100%. We also deliberate the theoretical proof for the false-positive case as our DWA-IDS do not have any false-positive case. The overhead of DWA-IDS is modest enough to be set up with low-power and memory-constrained devices.

2023-06-22
Seetharaman, Sanjay, Malaviya, Shubham, Vasu, Rosni, Shukla, Manish, Lodha, Sachin.  2022.  Influence Based Defense Against Data Poisoning Attacks in Online Learning. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :1–6.
Data poisoning is a type of adversarial attack on training data where an attacker manipulates a fraction of data to degrade the performance of machine learning model. There are several known defensive mechanisms for handling offline attacks, however defensive measures for online learning, where data points arrive sequentially, have not garnered similar interest. In this work, we propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup. Our proposed method utilizes an influence function which is a classic technique in robust statistics. Further, we supplement it with the existing data sanitization methods for filtering out some of the poisoned data points. We study the effectiveness of our defense mechanism on multiple datasets and across multiple attack strategies against an online learner.
ISSN: 2155-2509
2023-03-03
Zhang, Zipan, Liu, Zhaoyuan, Bai, Jiaqing.  2022.  Network attack detection model based on Linux memory forensics. 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :931–935.
With the rapid development of information science and technology, the role of the Internet in daily life is becoming more and more important, but while bringing speed and convenience to the experience, network security issues are endless, and fighting cybercrime will be an eternal topic. In recent years, new types of cyberattacks have made defense and analysis difficult. For example, the memory of network attacks makes some key array evidence only temporarily exist in physical memory, which puts forward higher requirements for attack detection. The traditional memory forensic analysis method for persistent data is no longer suitable for a new type of network attack analysis. The continuous development of memory forensics gives people hope. This paper proposes a network attack detection model based on memory forensic analysis to detect whether the system is under attack. Through experimental analysis, this model can effectively detect network attacks with low overhead and easy deployment, providing a new idea for network attack detection.
ISSN: 2157-1481
2023-04-14
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.  2022.  Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
2023-01-06
Daughety, Nathan, Pendleton, Marcus, Perez, Rebeca, Xu, Shouhuai, Franco, John.  2022.  Auditing a Software-Defined Cross Domain Solution Architecture. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :96—103.
In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.
2023-04-14
Yang, Xiaoran, Guo, Zhen, Mai, Zetian.  2022.  Botnet Detection Based on Machine Learning. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :213–217.
A botnet is a new type of attack method developed and integrated on the basis of traditional malicious code such as network worms and backdoor tools, and it is extremely threatening. This course combines deep learning and neural network methods in machine learning methods to detect and classify the existence of botnets. This sample does not rely on any prior features, the final multi-class classification accuracy rate is higher than 98.7%, the effect is significant.
2023-02-02
Moon, S. J., Nagalingam, D., Ngow, Y. T., Quah, A. C. T..  2022.  Combining Enhanced Diagnostic-Driven Analysis Scheme and Static Near Infrared Photon Emission Microscopy for Effective Scan Failure Debug. 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–6.
Software based scan diagnosis is the de facto method for debugging logic scan failures. Physical analysis success rate is high on dies diagnosed with maximum score, one symptom, one suspect and shorter net. This poses a limitation on maximum utilization of scan diagnosis data for PFA. There have been several attempts to combine dynamic fault isolation techniques with scan diagnosis results to enhance the utilization and success rate. However, it is not a feasible approach for foundry due to limited product design and test knowledge and hardware requirements such as probe card and tester. Suitable for a foundry, an enhanced diagnosis-driven analysis scheme was proposed in [1] that classifies the failures as frontend-of-line (FEOL) and backend-of-line (BEOL) improving the die selection process for PFA. In this paper, static NIR PEM and defect prediction approach are applied on dies that are already classified as FEOL and BEOL failures yet considered unsuitable for PFA due to low score, multiple symptoms, and suspects. Successful case studies are highlighted to showcase the effectiveness of using static NIR PEM as the next level screening process to further maximize the scan diagnosis data utilization.