Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2023-03-31
Gao, Ruijun, Guo, Qing, Juefei-Xu, Felix, Yu, Hongkai, Fu, Huazhu, Feng, Wei, Liu, Yang, Wang, Song.  2022.  Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :2140–2149.
Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.
2023-05-30
Shawky, Mahmoud A., Abbasi, Qammer H., Imran, Muhammad Ali, Ansari, Shuja, Taha, Ahmad.  2022.  Cross-Layer Authentication based on Physical-Layer Signatures for Secure Vehicular Communication. 2022 IEEE Intelligent Vehicles Symposium (IV). :1315—1320.
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
2022-12-09
de Oliveira Silva, Hebert.  2022.  CSAI-4-CPS: A Cyber Security characterization model based on Artificial Intelligence For Cyber Physical Systems. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S). :47—48.

The model called CSAI-4-CPS is proposed to characterize the use of Artificial Intelligence in Cybersecurity applied to the context of CPS - Cyber-Physical Systems. The model aims to establish a methodology being able to self-adapt using shared machine learning models, without incurring the loss of data privacy. The model will be implemented in a generic framework, to assess accuracy across different datasets, taking advantage of the federated learning and machine learning approach. The proposed solution can facilitate the construction of new AI cybersecurity tools and systems for CPS, enabling a better assessment and increasing the level of security/robustness of these systems more efficiently.

2022-12-23
Rodríguez, Elsa, Fukkink, Max, Parkin, Simon, van Eeten, Michel, Gañán, Carlos.  2022.  Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
Neyaz, Ashar, Shashidhar, Narasimha, Varol, Cihan, Rasheed, Amar.  2022.  Digital Forensics Analysis of Windows 11 Shellbag with Comparative Tools. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–10.
Operating systems have various components that produce artifacts. These artifacts are the outcome of a user’s interaction with an application or program and the operating system’s logging capabilities. Thus, these artifacts have great importance in digital forensics investigations. For example, these artifacts can be utilized in a court of law to prove the existence of compromising computer system behaviors. One such component of the Microsoft Windows operating system is Shellbag, which is an enticing source of digital evidence of high forensics interest. The presence of a Shellbag entry means a specific user has visited a particular folder and done some customizations such as accessing, sorting, resizing the window, etc. In this work, we forensically analyze Shellbag as we talk about its purpose, types, and specificity with the latest version of the Windows 11 operating system and uncover the registry hives that contain Shellbag customization information. We also conduct in-depth forensics examinations on Shellbag entries using three tools of three different types, i.e., open-source, freeware, and proprietary tools. Lastly, we compared the capabilities of tools utilized in Shellbag forensics investigations.
2023-04-28
Yang, Hongna, Zhang, Yiwei.  2022.  On an extremal problem of regular graphs related to fractional repetition codes. 2022 IEEE International Symposium on Information Theory (ISIT). :1566–1571.
Fractional repetition (FR) codes are a special family of regenerating codes with the repair-by-transfer property. The constructions of FR codes are naturally related to combinatorial designs, graphs, and hypergraphs. Given the file size of an FR code, it is desirable to determine the minimum number of storage nodes needed. The problem is related to an extremal graph theory problem, which asks for the minimum number of vertices of an α-regular graph such that any subgraph with k vertices has at most δ edges. In this paper, we present a class of regular graphs for this problem to give the bounds for the minimum number of storage nodes for the FR codes.
ISSN: 2157-8117
2022-12-09
Zhai, Lijing, Vamvoudakis, Kyriakos G., Hugues, Jérôme.  2022.  A Graph-Theoretic Security Index Based on Undetectability for Cyber-Physical Systems. 2022 American Control Conference (ACC). :1479—1484.
In this paper, we investigate the conditions for the existence of dynamically undetectable attacks and perfectly undetectable attacks. Then we provide a quantitative measure on the security for discrete-time linear time-invariant (LTI) systems under both actuator and sensor attacks based on undetectability. Finally, the computation of proposed security index is reduced to a min-cut problem for the structured systems by graph theory. Numerical examples are provided to illustrate the theoretical results.
2023-02-17
Shi, Jiameng, Guan, Le, Li, Wenqiang, Zhang, Dayou, Chen, Ping, Zhang, Ning.  2022.  HARM: Hardware-Assisted Continuous Re-randomization for Microcontrollers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :520–536.
Microcontroller-based embedded systems have become ubiquitous with the emergence of IoT technology. Given its critical roles in many applications, its security is becoming increasingly important. Unfortunately, MCU devices are especially vulnerable. Code reuse attacks are particularly noteworthy since the memory address of firmware code is static. This work seeks to combat code reuse attacks, including ROP and more advanced JIT-ROP via continuous randomization. Previous proposals are geared towards full-fledged OSs with rich runtime environments, and therefore cannot be applied to MCUs. We propose the first solution for ARM-based MCUs. Our system, named HARM, comprises a secure runtime and a binary analysis tool with rewriting module. The secure runtime, protected inside the secure world, proactively triggers and performs non-bypassable randomization to the firmware running in a sandbox in the normal world. Our system does not rely on any firmware feature, and therefore is generally applicable to both bare-metal and RTOS-powered firmware. We have implemented a prototype on a development board. Our evaluation results indicate that HARM can effectively thaw code reuse attacks while keeping the performance and energy overhead low.
2022-12-09
Usman Rana, M., Elahi, O., Mushtaq, M., Ali Shah, M..  2022.  Identity based cryptography for ad hoc networks. Competitive Advantage in the Digital Economy (CADE 2022). 2022:93—98.
With the rapid growth of wireless communication, sensor technology, and mobile computing, the ad hoc network has gained increasing attention from governments, corporations, and scientific research organisations. Ad hoc and sensor network security has become crucial. Malicious node identification, network resilience and survival, and trust models are among the security challenges discussed. The security of ad hoc networks is a key problem. In this paper, we'll look at a few security procedures and approaches that can be useful in keeping this network secure. We've compiled a list of all the ad networks' descriptions with explanations. Before presenting our conclusions from the examination of the literature, we went through various papers on the issue. The taxonomy diagram for the Ad-hoc Decentralized Network is the next item on the agenda. Security is one of the most significant challenges with an ad hoc network. In most cases, cyber-attackers will be able to connect to a wireless ad hoc network and, as a result, to the device if they reach within signal range. So, we moved on to a discussion of VANET, UAVs security issues discovered in the field. The outcomes of various ad hoc network methods were then summarised in the form tables. Furthermore, the Diffie Hellman Key Exchange is used to investigate strategies for improving ad-hoc network security and privacy in the next section, and a comparison of RSA with Diffie Hellman is also illustrated. This paper can be used as a guide and reference to provide readers with a broad knowledge of wireless ad hoc networks and how to deal with their security issues.
2023-03-17
Gao, Chulan, Shahriar, Hossain, Lo, Dan, Shi, Yong, Qian, Kai.  2022.  Improving the Prediction Accuracy with Feature Selection for Ransomware Detection. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :424–425.
This paper presents the machine learning algorithm to detect whether an executable binary is benign or ransomware. The ransomware cybercriminals have targeted our infrastructure, businesses, and everywhere which has directly affected our national security and daily life. Tackling the ransomware threats more effectively is a big challenge. We applied a machine-learning model to classify and identify the security level for a given suspected malware for ransomware detection and prevention. We use the feature selection data preprocessing to improve the prediction accuracy of the model.
ISSN: 0730-3157
2023-08-25
Delport, Petrus M.J, van Niekerk, Johan, Reid, Rayne.  2022.  Introduction to Information Security: From Formal Curriculum to Organisational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :463–469.
Many organisations responded to the recent global pandemic by moving operations online. This has led to increased exposure to information security-related risks. There is thus an increased need to ensure organisational information security awareness programs are up to date and relevant to the needs of the intended target audience. The advent of online educational providers has similarly placed increased pressure on the formal educational sector to ensure course content is updated to remain relevant. Such processes of academic reflection and review should consider formal curriculum standards and guidelines in order to ensure wide relevance. This paper presents a case study of the review of an Introduction to Information Security course. This review is informed by the Information Security and Assurance knowledge area of the ACM/IEEE Computer Science 2013 curriculum standard. The paper presents lessons learned during this review process to serve as a guide for future reviews of this nature. The authors assert that these lessons learned can also be of value during the review of organisational information security awareness programs.
ISSN: 2768-0657
2023-03-31
Kahla, Mostafa, Chen, Si, Just, Hoang Anh, Jia, Ruoxi.  2022.  Label-Only Model Inversion Attacks via Boundary Repulsion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15025–15033.
Recent studies show that the state-of-the-art deep neural networks are vulnerable to model inversion attacks, in which access to a model is abused to reconstruct private training data of any given target class. Existing attacks rely on having access to either the complete target model (whitebox) or the model's soft-labels (blackbox). However, no prior work has been done in the harder but more practical scenario, in which the attacker only has access to the model's predicted label, without a confidence measure. In this paper, we introduce an algorithm, Boundary-Repelling Model Inversion (BREP-MI), to invert private training data using only the target model's predicted labels. The key idea of our algorithm is to evaluate the model's predicted labels over a sphere and then estimate the direction to reach the target class's centroid. Using the example of face recognition, we show that the images reconstructed by BREP-MI successfully reproduce the semantics of the private training data for various datasets and target model architectures. We compare BREP-MI with the state-of-the-art white-box and blackbox model inversion attacks, and the results show that despite assuming less knowledge about the target model, BREP-MI outperforms the blackbox attack and achieves comparable results to the whitebox attack. Our code is available online.11https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion
2023-01-05
Chen, Ye, Lai, Yingxu, Zhang, Zhaoyi, Li, Hanmei, Wang, Yuhang.  2022.  Malicious attack detection based on traffic-flow information fusion. 2022 IFIP Networking Conference (IFIP Networking). :1–9.
While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
2023-04-14
Barakat, Ghena, Al-Duwairi, Basheer, Jarrah, Moath, Jaradat, Manar.  2022.  Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
Ma, Xiao, Wang, Yixin, Zhu, Tingting.  2022.  A New Framework for Proving Coding Theorems for Linear Codes. 2022 IEEE International Symposium on Information Theory (ISIT). :2768–2773.

A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.

ISSN: 2157-8117

2022-12-09
Gualandi, Gabriele, Maggio, Martina, Vittorio Papadopoulos, Alessandro.  2022.  Optimization-based attack against control systems with CUSUM-based anomaly detection. 2022 30th Mediterranean Conference on Control and Automation (MED). :896—901.
Security attacks on sensor data can deceive a control system and force the physical plant to reach an unwanted and potentially dangerous state. Therefore, attack detection mechanisms are employed in cyber-physical control systems to detect ongoing attacks, the most prominent one being a threshold-based anomaly detection method called CUSUM. Literature defines the maximum impact of stealth attacks as the maximum deviation in the plant’s state that an undetectable attack can introduce, and formulates it as an optimization problem. This paper proposes an optimization-based attack with different saturation models, and it investigates how the attack duration significantly affects the impact of the attack on the state of the plant. We show that more dangerous attacks can be discovered when allowing saturation of the control system actuators. The proposed approach is compared with the geometric attack, showing how longer attack durations can lead to a greater impact of the attack while keeping the attack stealthy.
2022-12-20
Xie, Nanjiang, Gong, Zheng, Tang, Yufeng, Wang, Lei, Wen, Yamin.  2022.  Protecting White-Box Block Ciphers with Galois/Counter Mode. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1–7.
All along, white-box cryptography researchers focus on the design and implementation of certain primitives but less to the practice of the cipher working modes. For example, the Galois/Counter Mode (GCM) requires block ciphers to perform only the encrypting operations, which inevitably facing code-lifting attacks under the white-box security model. In this paper, a code-lifting resisted GCM (which is named WBGCM) is proposed to mitigate this security drawbacks in the white-box context. The basic idea is to combining external encodings with exclusive-or operations in GCM, and therefore two different schemes are designed with external encodings (WBGCM-EE) and maskings (WBGCM-Maksing), respectively. Furthermore, WBGCM is instantiated with Chow et al.'s white-box AES, and the experiments show that the processing speeds of WBGCM-EE and WBGCM-Masking achieves about 5 MBytes/Second with a marginal storage overhead.
2023-06-22
Lei, Gang, Wu, Junyi, Gu, Keyang, Ji, Lejun, Cao, Yuanlong, Shao, Xun.  2022.  An QUIC Traffic Anomaly Detection Model Based on Empirical Mode Decomposition. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :76–80.
With the advent of the 5G era, high-speed and secure network access services have become a common pursuit. The QUIC (Quick UDP Internet Connection) protocol proposed by Google has been studied by many scholars due to its high speed, robustness, and low latency. However, the research on the security of the QUIC protocol by domestic and foreign scholars is insufficient. Therefore, based on the self-similarity of QUIC network traffic, combined with traffic characteristics and signal processing methods, a QUIC-based network traffic anomaly detection model is proposed in this paper. The model decomposes and reconstructs the collected QUIC network traffic data through the Empirical Mode Decomposition (EMD) method. In order to judge the occurrence of abnormality, this paper also intercepts overlapping traffic segments through sliding windows to calculate Hurst parameters and analyzes the obtained parameters to check abnormal traffic. The simulation results show that in the network environment based on the QUIC protocol, the Hurst parameter after being attacked fluctuates violently and exceeds the normal range. It also shows that the anomaly detection of QUIC network traffic can use the EMD method.
ISSN: 2325-5609
2023-03-17
Vehabovic, Aldin, Ghani, Nasir, Bou-Harb, Elias, Crichigno, Jorge, Yayimli, Aysegül.  2022.  Ransomware Detection and Classification Strategies. 2022 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :316–324.
Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransom ware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.
2023-02-17
Khan, Shahnawaz, Yusuf, Ammar, Haider, Mohammad, Thirunavukkarasu, K., Nand, Parma, Imam Rahmani, Mohammad Khalid.  2022.  A Review of Android and iOS Operating System Security. 2022 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). :67–72.
Mobile devices are an inseparable part of our lives. They have made it possible to access all the information and services anywhere at any time. Almost all of the organizations try to provide a mobile device-based solution to its users. However, this convenience has arisen the risk of losing personal information and has increased the threat to security. It has been observed recently that some of the mobile device manufacturers and mobile apps developers have lost the private information of their users to hackers. It has risen a great concern among mobile device users about their personal information. Android and iOS are the major operating systems for mobile devices and share over 99% of the mobile device market. This research aims to conduct a comparative analysis of the security of the components in the Android and iOS operating systems. It analyses the security from several perspectives such as memory randomization, application sandboxing, isolation, encryption, built-in antivirus, and data storage. From the analysis, it is evident that iOS is more secure than Android operating system. However, this security comes with a cost of losing the freedom.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2023-03-17
Kim, Yujin, Liu, Zhan, Jiang, Hao, Ma, T.P., Zheng, Jun-Fei, Chen, Phil, Condo, Eric, Hendrix, Bryan, O'Neill, James A..  2022.  A Study on the Hf0.5Zr0.5O2 Ferroelectric Capacitors fabricated with Hf and Zr Chlorides. 2022 China Semiconductor Technology International Conference (CSTIC). :1–3.
Ferroelectric capacitor memory devices with carbon-free Hf0.5Zr0.5O2 (HZO) ferroelectric films are fabricated and characterized. The HZO ferroelectric films are deposited by ALD at temperatures from 225 to 300°C, with HfCl4 and ZrCl4 as the precursors. Residual chlorine from the precursors is measured and studied systematically with various process temperatures. 10nm HZO films with optimal ALD growth temperature at 275°C exhibit remanent polarization of 25µC/cm2 and cycle endurance of 5×1011. Results will be compared with those from HZO films deposited with carbon containing metal-organic precursors.
2023-01-05
Tuba, Eva, Alihodzic, Adis, Tuba, Una, Capor Hrosik, Romana, Tuba, Milan.  2022.  Swarm Intelligence Approach for Feature Selection Problem. 2022 10th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
Classification problems have been part of numerous real-life applications in fields of security, medicine, agriculture, and more. Due to the wide range of applications, there is a constant need for more accurate and efficient methods. Besides more efficient and better classification algorithms, the optimal feature set is a significant factor for better classification accuracy. In general, more features can better describe instances, but besides showing differences between instances of different classes, it can also capture many similarities that lead to wrong classification. Determining the optimal feature set can be considered a hard optimization problem for which different metaheuristics, like swarm intelligence algorithms can be used. In this paper, we propose an adaptation of hybridized swarm intelligence (SI) algorithm for feature selection problem. To test the quality of the proposed method, classification was done by k-means algorithm and it was tested on 17 benchmark datasets from the UCI repository. The results are compared to similar approaches from the literature where SI algorithms were used for feature selection, which proves the quality of the proposed hybridized SI method. The proposed method achieved better classification accuracy for 16 datasets. Higher classification accuracy was achieved while simultaneously reducing the number of used features.
2023-04-28
Zhu, Tingting, Liang, Jifan, Ma, Xiao.  2022.  Ternary Convolutional LDGM Codes with Applications to Gaussian Source Compression. 2022 IEEE International Symposium on Information Theory (ISIT). :73–78.
We present a ternary source coding scheme in this paper, which is a special class of low density generator matrix (LDGM) codes. We prove that a ternary linear block LDGM code, whose generator matrix is randomly generated with each element independent and identically distributed, is universal for source coding in terms of the symbol-error rate (SER). To circumvent the high-complex maximum likelihood decoding, we introduce a special class of convolutional LDGM codes, called block Markov superposition transmission of repetition (BMST-R) codes, which are iteratively decodable by a sliding window algorithm. Then the presented BMST-R codes are applied to construct a tandem scheme for Gaussian source compression, where a dead-zone quantizer is introduced before the ternary source coding. The main advantages of this scheme are its universality and flexibility. The dead-zone quantizer can choose a proper quantization level according to the distortion requirement, while the LDGM codes can adapt the code rate to approach the entropy of the quantized sequence. Numerical results show that the proposed scheme performs well for ternary sources over a wide range of code rates and that the distortion introduced by quantization dominates provided that the code rate is slightly greater than the discrete entropy.
ISSN: 2157-8117