Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-05-24
Grubbs, Paul, Ristenpart, Thomas, Shmatikov, Vitaly.  2017.  Why Your Encrypted Database Is Not Secure. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :162–168.
Encrypted databases, a popular approach to protecting data from compromised database management systems (DBMS's), use abstract threat models that capture neither realistic databases, nor realistic attack scenarios. In particular, the "snapshot attacker" model used to support the security claims for many encrypted databases does not reflect the information about past queries available in any snapshot attack on an actual DBMS. We demonstrate how this gap between theory and reality causes encrypted databases to fail to achieve their "provable security" guarantees.
2018-01-10
Kuo, J., Lal, A..  2017.  Wideband material detection for spoof resistance in GHz ultrasonic fingerprint sensing. 2017 IEEE International Ultrasonics Symposium (IUS). :1–1.
One of the primary motivations for using ultrasound reflectometry for fingerprint imaging is the promise of increased spoof resistance over conventional optical or capacitive sensing approaches due to the ability for ultrasound to determine the elastic impedance of the imaged material. A fake 3D printed plastic finger can therefore be easily distinguished from a real finger. However, ultrasonic sensors are still vulnerable to materials that are similar in impedance to tissue, such as water or rubber. Previously we demonstrated an ultrasonic fingerprint reader operating with 1.3GHz ultrasound based on pulse echo impedance imaging on the backside silicon interface. In this work, we utilize the large bandwidth of these sensors to differentiate between a finger and materials with similar impedances using the frequency response of elastic impedance obtained by transducer excitation with a wideband RF chirp signal. The reflected signal is a strong function of impedance mismatch and absorption [Hoople 2015].
2018-03-05
Carmer, Brent, Malozemoff, Alex J., Raykova, Mariana.  2017.  5Gen-C: Multi-Input Functional Encryption and Program Obfuscation for Arithmetic Circuits. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :747–764.

Program obfuscation is a powerful security primitive with many applications. White-box cryptography studies a particular subset of program obfuscation targeting keyed pseudorandom functions (PRFs), a core component of systems such as mobile payment and digital rights management. Although the white-box obfuscators currently used in practice do not come with security proofs and are thus routinely broken, recent years have seen an explosion of cryptographic techniques for obfuscation, with the goal of avoiding this build-and-break cycle. In this work, we explore in detail cryptographic program obfuscation and the related primitive of multi-input functional encryption (MIFE). In particular, we extend the 5Gen framework (CCS 2016) to support circuit-based MIFE and program obfuscation, implementing both existing and new constructions. We then evaluate and compare the efficiency of these constructions in the context of PRF obfuscation. As part of this work we (1) introduce a novel instantiation of MIFE that works directly on functions represented as arithmetic circuits, (2) use a known transformation from MIFE to obfuscation to give us an obfuscator that performs better than all prior constructions, and (3) develop a compiler for generating circuits optimized for our schemes. Finally, we provide detailed experiments, demonstrating, among other things, the ability to obfuscate a PRF with a 64-bit key and 12 bits of input (containing 62k gates) in under 4 hours, with evaluation taking around 1 hour. This is by far the most complex function obfuscated to date.

2018-05-01
Wang, X., Zhou, S..  2017.  Accelerated Stochastic Gradient Method for Support Vector Machines Classification with Additive Kernel. 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS). :1–6.

Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.

2018-03-26
Duraisamy, Karthi, Lu, Hao, Pande, Partha Pratim, Kalyanaraman, Ananth.  2017.  Accelerating Graph Community Detection with Approximate Updates via an Energy-Efficient NoC. Proceedings of the 54th Annual Design Automation Conference 2017. :89:1–89:6.

Community detection is an advanced graph operation that is used to reveal tightly-knit groups of vertices (aka. communities) in real-world networks. Given the intractability of the problem, efficient heuristics are used in practice. Yet, even the best of these state-of-the-art heuristics can become computationally demanding over large inputs and can generate workloads that exhibit inherent irregularity in data movement on manycore platforms. In this paper, we posit that effective acceleration of the graph community detection operation can be achieved by reducing the cost of data movement through a combined innovation at both software and hardware levels. More specifically, we first propose an efficient software-level parallelization of community detection that uses approximate updates to cleverly exploit a diminishing returns property of the algorithm. Secondly, as a way to augment this innovation at the software layer, we design an efficient Wireless Network on Chip (WiNoC) architecture that is suited to handle the irregular on-chip data movements exhibited by the community detection algorithm under both unicast- and broadcast-heavy cache coherence protocols. Experimental results show that our resulting WiNoC-enabled manycore platform achieves on average 52% savings in execution time, without compromising on the quality of the outputs, when compared to a traditional manycore platform designed with a wireline mesh NoC and running community detection without employing approximate updates.

2018-06-11
Crabtree, A., Lodge, T., Colley, J., Greenghalgh, C., Mortier, R..  2017.  Accountable Internet of Things? Outline of the IoT databox model 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM). :1–6.

This paper outlines the IoT Databox model as a means of making the Internet of Things (IoT) accountable to individuals. Accountability is a key to building consumer trust and mandated in data protection legislation. We briefly outline the `external' data subject accountability requirement specified in actual legislation in Europe and proposed legislation in the US, and how meeting requirement this turns on surfacing the invisible actions and interactions of connected devices and the social arrangements in which they are embedded. The IoT Databox model is proposed as an in principle means of enabling accountability and providing individuals with the mechanisms needed to build trust in the IoT.

2018-04-02
Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L., Samelin, K., Yakoubov, S..  2017.  Accumulators with Applications to Anonymity-Preserving Revocation. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :301–315.

Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.

2017-12-20
Raiola, P., Erb, D., Reddy, S. M., Becker, B..  2017.  Accurate Diagnosis of Interconnect Open Defects Based on the Robust Enhanced Aggressor Victim Model. 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID). :135–140.

Interconnect opens are known to be one of the predominant defects in nanoscale technologies. Automatic test pattern generation for open faults is challenging, because of their rather unstable behavior and the numerous electrical parameters which need to be considered. Thus, most approaches try to avoid accurate modeling of all constraints like the influence of the aggressors on the open net and use simplified fault models in order to detect as many faults as possible or make assumptions which decrease both complexity and accuracy. Yet, this leads to the problem that not only generated tests may be invalidated but also the localization of a specific fault may fail - in case such a model is used as basis for diagnosis. Furthermore, most of the models do not consider the problem of oscillating behavior, caused by feedback introduced by coupling capacitances, which occurs in almost all designs. In [1], the Robust Enhanced Aggressor Victim Model (REAV) and in [2] an extension to address the problem of oscillating behavior were introduced. The resulting model does not only consider the influence of all aggressors accurately but also guarantees robustness against oscillating behavior as well as process variations affecting the thresholds of gates driven by an open interconnect. In this work we present the first diagnostic classification algorithm for this model. This algorithm considers all constraints enforced by the REAV model accurately - and hence handles unknown values as well as oscillating behavior. In addition, it allows to distinguish faults at the same interconnect and thus reducing the area that has to be considered for physical failure analysis. Experimental results show the high efficiency of the new method handling circuits with up to 500,000 non-equivalent faults and considerably increasing the diagnostic resolution.

Fang, Y., Dickerson, S. J..  2017.  Achieving Swarm Intelligence with Spiking Neural Oscillators. 2017 IEEE International Conference on Rebooting Computing (ICRC). :1–4.

Mimicking the collaborative behavior of biological swarms, such as bird flocks and ant colonies, Swarm Intelligence algorithms provide efficient solutions for various optimization problems. On the other hand, a computational model of the human brain, spiking neural networks, has been showing great promise in recognition, inference, and learning, due to recent emergence of neuromorphic hardware for high-efficient and low-power computing. Through bridging these two distinct research fields, we propose a novel computing paradigm that implements the swarm intelligence with a population of coupled spiking neural oscillators in basic leaky integrate-and-fire (LIF) model. Our model behaves as a meta-heuristic searching conducted by multiple collaborative agents. In this design, the oscillating neurons serve as agents in the swarm, search for solutions in frequency coding and communicate with each other through spikes. The firing rate of each agent is adaptive to other agents with better solutions and the optimal solution is rendered as the swarm synchronization is reached. We apply the proposed method to the parameter optimization in several test objective functions and demonstrate its effectiveness and efficiency. Our new computing paradigm expands the computational power of coupled spiking neurons in the field of solving optimization problem and brings opportunities for the connection between individual intelligence and swarm intelligence.

2018-02-06
Huang, Lulu, Matwin, Stan, de Carvalho, Eder J., Minghim, Rosane.  2017.  Active Learning with Visualization for Text Data. Proceedings of the 2017 ACM Workshop on Exploratory Search and Interactive Data Analytics. :69–74.

Labeled datasets are always limited, and oftentimes the quantity of labeled data is a bottleneck for data analytics. This especially affects supervised machine learning methods, which require labels for models to learn from the labeled data. Active learning algorithms have been proposed to help achieve good analytic models with limited labeling efforts, by determining which additional instance labels will be most beneficial for learning for a given model. Active learning is consistent with interactive analytics as it proceeds in a cycle in which the unlabeled data is automatically explored. However, in active learning users have no control of the instances to be labeled, and for text data, the annotation interface is usually document only. Both of these constraints seem to affect the performance of an active learning model. We hypothesize that visualization techniques, particularly interactive ones, will help to address these constraints. In this paper, we implement a pilot study of visualization in active learning for text classification, with an interactive labeling interface. We compare the results of three experiments. Early results indicate that visualization improves high-performance machine learning model building with an active learning algorithm.

2018-03-19
Jin, X., Haddad, W. M., Hayakawa, T..  2017.  An Adaptive Control Architecture for Cyber-Physical System Security in the Face of Sensor and Actuator Attacks and Exogenous Stochastic Disturbances. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :1380–1385.

In this paper, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems subject to exogenous disturbances. Specifically, we develop an adaptive controller for time-invariant, state-dependent adversarial sensor and actuator attacks in the face of stochastic exogenous disturbances. We show that the proposed controller guarantees uniform ultimate boundedness of the closed-loop dynamical system in a mean-square sense. We further discuss the practicality of the proposed approach and provide a numerical example involving the lateral directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control architecture.

2018-09-28
Alnemari, A., Romanowski, C. J., Raj, R. K..  2017.  An Adaptive Differential Privacy Algorithm for Range Queries over Healthcare Data. 2017 IEEE International Conference on Healthcare Informatics (ICHI). :397–402.

Differential privacy is an approach that preserves patient privacy while permitting researchers access to medical data. This paper presents mechanisms proposed to satisfy differential privacy while answering a given workload of range queries. Representing input data as a vector of counts, these methods partition the vector according to relationships between the data and the ranges of the given queries. After partitioning the vector into buckets, the counts of each bucket are estimated privately and split among the bucket's positions to answer the given query set. The performance of the proposed method was evaluated using different workloads over several attributes. The results show that partitioning the vector based on the data can produce more accurate answers, while partitioning the vector based on the given workload improves privacy. This paper's two main contributions are: (1) improving earlier work on partitioning mechanisms by building a greedy algorithm to partition the counts' vector efficiently, and (2) its adaptive algorithm considers the sensitivity of the given queries before providing results.

2017-12-12
Miller, J. A., Peng, H., Cotterell, M. E..  2017.  Adding Support for Theory in Open Science Big Data. 2017 IEEE World Congress on Services (SERVICES). :71–75.

Open Science Big Data is emerging as an important area of research and software development. Although there are several high quality frameworks for Big Data, additional capabilities are needed for Open Science Big Data. These include data provenance, citable reusable data, data sources providing links to research literature, relationships to other data and theories, transparent analysis/reproducibility, data privacy, new optimizations/advanced algorithms, data curation, data storage and transfer. An important part of science is explanation of results, ideally leading to theory formation. In this paper, we examine means for supporting the use of theory in big data analytics as well as using big data to assist in theory formation. One approach is to fit data in a way that is compatible with some theory, existing or new. Functional Data Analysis allows precise fitting of data as well as penalties for lack of smoothness or even departure from theoretical expectations. This paper discusses principal differential analysis and related techniques for fitting data where, for example, a time-based process is governed by an ordinary differential equation. Automation in theory formation is also considered. Case studies in the fields of computational economics and finance are considered.

2018-03-26
Das, Debasis, Kumar, Amritesh.  2017.  Algorithm for Multicast Opportunistic Routing in Wireless Mesh Networks. Proceedings of the 6th International Conference on Software and Computer Applications. :250–255.

Multi-hop Wireless Mesh Networks (WMNs) is a promising new technique for communication with routing protocol designs being critical to the effective and efficient of these WMNs. A common approach for routing traffic in these networks is to select a minimal distance from source to destination as in wire-line networks. Opportunistic Routing(OR) makes use of the broadcasting ability of wireless network and is especially very helpful for WMN because all nodes are static. Our proposed scheme of Multicast Opportunistic Routing(MOR) in WMNs is based on the broadcast transmissions and Learning Au-tomata (LA) to expand the potential candidate nodes that can aid in the process of retransmission of the data. The receivers are required to be in sync with one another in order to avoid duplicated broadcasting of data which is generally achieved by formulating the forwarding candidates according to some LA based metric. The most adorable aspect of this protocol is that it intelligently "learns" from the past experience and improves its performance. The results obtained via this approach of MOR, shows that the proposed scheme outperforms with some existing sachems and is an improved and more effective version of opportunistic routing in mesh network.

2018-05-01
Burkard, Cody, Lagesse, Brent.  2017.  Analysis of Causative Attacks Against SVMs Learning from Data Streams. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. :31–36.

Machine learning algorithms have been proven to be vulnerable to a special type of attack in which an active adversary manipulates the training data of the algorithm in order to reach some desired goal. Although this type of attack has been proven in previous work, it has not been examined in the context of a data stream, and no work has been done to study a targeted version of the attack. Furthermore, current literature does not provide any metrics that allow a system to detect these attack while they are happening. In this work, we examine the targeted version of this attack on a Support Vector Machine(SVM) that is learning from a data stream, and examine the impact that this attack has on current metrics that are used to evaluate a models performance. We then propose a new metric for detecting these attacks, and compare its performance against current metrics.

2018-03-19
Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

2018-04-11
K, S. K., Sahoo, S., Mahapatra, A., Swain, A. K., Mahapatra, K. K..  2017.  Analysis of Side-Channel Attack AES Hardware Trojan Benchmarks against Countermeasures. 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :574–579.

Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.

2018-02-02
Zha, X., Wang, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K..  2017.  Analytic model on data security in VANETs. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). :1–6.

Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.

2018-02-06
Choucri, N., Agarwal, G..  2017.  Analytics for Smart Grid Cybersecurity. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.

Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).

Eslami, M., Zheng, G., Eramian, H., Levchuk, G..  2017.  Anomaly Detection on Bipartite Graphs for Cyber Situational Awareness and Threat Detection. 2017 IEEE International Conference on Big Data (Big Data). :4741–4743.

Data from cyber logs can often be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with rapid situational awareness of their network. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.

2018-05-02
Zhang, P., Zhang, X., Sun, X., Liu, J. K., Yu, J., Jiang, Z. L..  2017.  Anonymous Anti-Sybil Attack Protocol for Mobile Healthcare Networks Analytics. 2017 IEEE Trustcom/BigDataSE/ICESS. :668–674.

Mobile Healthcare Networks (MHN) continuouslycollect the patients' health data sensed by wearable devices, andanalyze the collected data pre-processed by servers combinedwith medical histories, such that disease diagnosis and treatmentare improved, and the heavy burden on the existing healthservices is released. However, the network is vulnerable to Sybilattacks, which would degrade network performance, disruptproceedings, manipulate data or cheat others maliciously. What'smore, the user is reluctant to leak identity privacy, so the identityprivacy preserving makes Sybil defenses more difficult. One ofthe best choices is mutually authenticating each other with noidentity information involved. Thus, we propose a fine-grainedauthentication scheme based on Attribute-Based Signature (ABS)using lattice assumption, where a signer is authorized by an at-tribute set instead of single identity string. This ABS scheme usesFiat-Shamir framework and supports flexible threshold signaturepredicates. Moreover, to anonymously guarantee integrity andavailability of health data in MHN, we design an anonymousanti-Sybil attack protocol based on our ABS scheme, so thatSybil attacks are prevented. As there is no linkability betweenidentities and services, the users' identity privacy is protected. Finally, we have analyzed the security and simulated the runningtime for our proposed ABS scheme.

2018-06-11
Chowdhury, Muktadir, Gawande, Ashlesh, Wang, Lan.  2017.  Anonymous Authentication and Pseudonym-renewal for VANET in NDN. Proceedings of the 4th ACM Conference on Information-Centric Networking. :222–223.

Secure deployment of a vehicular network depends on the network's trust establishment and privacy-preserving capability. In this paper, we propose a scheme for anonymous pseudonym-renewal and pseudonymous authentication for vehicular ad-hoc networks over a data-centric Internet architecture called Named Data networking (NDN). We incorporated our design in a traffic information sharing demo application and deployed it on Raspberry Pi-based miniature cars for evaluation.

2018-05-02
Shanthi, D., Mohanty, R. K., Narsimha, G., Aruna, V..  2017.  Application of partical swarm intelligence technique to predict software reliability. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :629–635.

Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.

2018-04-11
Harkanson, R., Kim, Y..  2017.  Applications of Elliptic Curve Cryptography: A Light Introduction to Elliptic Curves and a Survey of Their Applications. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :6:1–6:7.

Elliptic curve cryptography (ECC) is a relatively newer form of public key cryptography that provides more security per bit than other forms of cryptography still being used today. We explore the mathematical structure and operations of elliptic curves and how those properties make curves suitable tools for cryptography. A brief historical context is given followed by the safety of usage in production, as not all curves are free from vulnerabilities. Next, we compare ECC with other popular forms of cryptography for both key exchange and digital signatures, in terms of security and speed. Traditional applications of ECC, both theoretical and in-practice, are presented, including key exchange for web browser usage and DNSSEC. We examine multiple uses of ECC in a mobile context, including cellular phones and the Internet of Things. Modern applications of curves are explored, such as iris recognition, RFID, smart grid, as well as an application for E-health. Finally, we discuss how ECC stacks up in a post-quantum cryptography world.

2017-12-20
Hao, K., Achanta, S. V., Fowler, J., Keckalo, D..  2017.  Apply a wireless line sensor system to enhance distribution protection schemes. 2017 70th Annual Conference for Protective Relay Engineers (CPRE). :1–11.

Traditionally, utility crews have used faulted circuit indicators (FCIs) to locate faulted line sections. FCIs monitor current and provide a local visual indication of recent fault activity. When a fault occurs, the FCIs operate, triggering a visual indication that is either a mechanical target (flag) or LED. There are also enhanced FCIs with communications capability, providing fault status to the outage management system (OMS) or supervisory control and data acquisition (SCADA) system. Such quickly communicated information results in faster service restoration and reduced outage times. For distribution system protection, protection devices (such as recloser controls) must coordinate with downstream devices (such as fuses or other recloser controls) to clear faults. Furthermore, if there are laterals on a feeder that are protected by a recloser control, it is desirable to communicate to the recloser control which lateral had the fault in order to enhance tripping schemes. Because line sensors are typically placed along distribution feeders, they are capable of sensing fault status and characteristics closer to the fault. If such information can be communicated quickly to upstream protection devices, at protection speeds, the protection devices can use this information to securely speed up distribution protection scheme operation. With recent advances in low-power electronics, wireless communications, and small-footprint sensor transducers, wireless line sensors can now provide fault information to the protection devices with low latencies that support protection speeds. This paper describes the components of a wireless protection sensor (WPS) system, its integration with protection devices, and how the fault information can be transmitted to such devices. Additionally, this paper discusses how the protection devices use this received fault information to securely speed up the operation speed of and improve the selectivity of distribution protection schemes, in add- tion to locating faulted line sections.