Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-01-16
Viet, A. N., Van, L. P., Minh, H. A. N., Xuan, H. D., Ngoc, N. P., Huu, T. N..  2017.  Mitigating HTTP GET flooding attacks in SDN using NetFPGA-based OpenFlow switch. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :660–663.

In this paper, we propose a hardware-based defense system in Software-Defined Networking architecture to protect against the HTTP GET Flooding attacks, one of the most dangerous Distributed Denial of Service (DDoS) attacks in recent years. Our defense system utilizes per-URL counting mechanism and has been implemented on FPGA as an extension of a NetFPGA-based OpenFlow switch.

2018-06-11
Maines, C. L., Zhou, B., Tang, S., Shi, Q..  2017.  Towards a Framework for the Extension and Visualisation of Cyber Security Requirements in Modelling Languages. 2017 10th International Conference on Developments in eSystems Engineering (DeSE). :71–76.
Every so often papers are published presenting a new extension for modelling cyber security requirements in Business Process Model and Notation (BPMN). The frequent production of new extensions by experts belies the need for a richer and more usable representation of security requirements in BPMN processes. In this paper, we present our work considering an analysis of existing extensions and identify the notational issues present within each of them. We discuss how there is yet no single extension which represents a comprehensive range of cyber security concepts. Consequently, there is no adequate solution for accurately specifying cyber security requirements within BPMN. In order to address this, we propose a new framework that can be used to extend, visualise and verify cyber security requirements in not only BPMN, but any other existing modelling language. The framework comprises of the three core roles necessary for the successful development of a security extension. With each of these being further subdivided into the respective components each role must complete.
2018-04-11
Wang, Q., Geiger, R. L..  2017.  Visible but Transparent Hardware Trojans in Clock Generation Circuits. 2017 IEEE National Aerospace and Electronics Conference (NAECON). :354–357.

Hardware Trojans that can be easily embedded in synchronous clock generation circuits typical of what are used in large digital systems are discussed. These Trojans are both visible and transparent. Since they are visible, they will penetrate split-lot manufacturing security methods and their transparency will render existing detection methods ineffective.

2018-01-23
Nakhla, N., Perrett, K., McKenzie, C..  2017.  Automated computer network defence using ARMOUR: Mission-oriented decision support and vulnerability mitigation. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Mission assurance requires effective, near-real time defensive cyber operations to appropriately respond to cyber attacks, without having a significant impact on operations. The ability to rapidly compute, prioritize and execute network-based courses of action (CoAs) relies on accurate situational awareness and mission-context information. Although diverse solutions exist for automatically collecting and analysing infrastructure data, few deliver automated analysis and implementation of network-based CoAs in the context of the ongoing mission. In addition, such processes can be operatorintensive and available tools tend to be specific to a set of common data sources and network responses. To address these issues, Defence Research and Development Canada (DRDC) is leading the development of the Automated Computer Network Defence (ARMOUR) technology demonstrator and cyber defence science and technology (S&T) platform. ARMOUR integrates new and existing off-the-shelf capabilities to provide enhanced decision support and to automate many of the tasks currently executed manually by network operators. This paper describes the cyber defence integration framework, situational awareness, and automated mission-oriented decision support that ARMOUR provides.

2018-01-10
Zhang, Y., Duan, L., Sun, C. A., Cheng, B., Chen, J..  2017.  A Cross-Layer Security Solution for Publish/Subscribe-Based IoT Services Communication Infrastructure. 2017 IEEE International Conference on Web Services (ICWS). :580–587.

The publish/subscribe paradigm can be used to build IoT service communication infrastructure owing to its loose coupling and scalability. Its features of decoupling among event producers and event consumers make IoT services collaborations more real-time and flexible, and allow indirect, anonymous and multicast IoT service interactions. However, in this environment, the IoT service cannot directly control the access to the events. This paper proposes a cross-layer security solution to address the above issues. The design principle of our security solution is to embed security policies into events as well as allow the network to route events according to publishers' policies and requirements. This solution helps to improve the system's performance, while keeping features of IoT service interactions and minimizing the event visibility at the same time. Experimental results show that our approach is effective.

2018-01-23
Zhmud, V., Dimitrov, L., Taichenachev, A..  2017.  Model study of automatic and automated control of hysteretic object. 2017 International Siberian Conference on Control and Communications (SIBCON). :1–5.

This paper presents the results of research and simulation of feature automated control of a hysteretic object and the difference between automated control and automatic control. The main feature of automatic control is in the fact that the control loop contains human being as a regulator with its limited response speed. The human reaction can be described as integrating link. The hysteretic object characteristic is switching from one state to another. This is followed by a transient process from one to another characteristic. For this reason, it is very difficult to keep the object in a desired state. Automatic operation ensures fast switching of the feedback signal that produces such a mode, which in many ways is similar to the sliding mode. In the sliding mode control signal abruptly switches from maximum to minimum and vice versa. The average value provides the necessary action to the object. Theoretical analysis and simulation show that the use of the maximum value of the control signal is not required. It is sufficient that the switching oscillation amplitude is such that the output signal varies with the movement of the object along both branches with hysteretic characteristics in the fastest cycle. The average output value in this case corresponds to the prescribed value of the control task. With automated control, the human response can be approximately modeled by integrating regulator. In this case the amplitude fluctuation could be excessively high and the frequency could be excessively low. The simulation showed that creating an artificial additional fluctuation in the control signal makes possible to provide a reduction in the amplitude and the resulting increase in the frequency of oscillation near to the prescribed value. This should be evaluated as a way to improve the quality of automated control with the helps of human being. The paper presents some practical examples of the examined method.

Erola, A., Agrafiotis, I., Happa, J., Goldsmith, M., Creese, S., Legg, P. A..  2017.  RicherPicture: Semi-automated cyber defence using context-aware data analytics. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.

2017-12-28
Kumar, S. A. P., Bhargava, B., Macêdo, R., Mani, G..  2017.  Securing IoT-Based Cyber-Physical Human Systems against Collaborative Attacks. 2017 IEEE International Congress on Internet of Things (ICIOT). :9–16.

Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.

Chatti, S., Ounelli, H..  2017.  Fault Tolerance in a Cloud of Databases Environment. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :166–171.

We will focused the concept of serializability in order to ensure the correct processing of transactions. However, both serializability and relevant properties within transaction-based applications might be affected. Ensure transaction serialization in corrupt systems is one of the demands that can handle properly interrelated transactions, which prevents blocking situations that involve the inability to commit either transaction or related sub-transactions. In addition some transactions has been marked as malicious and they compromise the serialization of running system. In such context, this paper proposes an approach for the processing of transactions in a cloud of databases environment able to secure serializability in running transactions whether the system is compromised or not. We propose also an intrusion tolerant scheme to ensure the continuity of the running transactions. A case study and a simulation result are shown to illustrate the capabilities of the suggested system.

2018-04-11
Ma, C., Guo, Y., Su, J..  2017.  A Multiple Paths Scheme with Labels for Key Distribution on Quantum Key Distribution Network. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2513–2517.

This paper establishes a probability model of multiple paths scheme of quantum key distribution with public nodes among a set of paths which are used to transmit the key between the source node and the destination node. Then in order to be used in universal net topologies, combining with the key routing in the QKD network, the algorithm of the multiple paths scheme of key distribution we propose includes two major aspects: one is an approach which can confirm the number and the distance of the selection of paths, and the other is the strategy of stochastic paths with labels that can decrease the number of public nodes and avoid the phenomenon that the old scheme may produce loops and often get the nodes apart from the destination node father than current nodes. Finally, the paper demonstrates the rationality of the probability model and strategies about the algorithm.

2018-01-10
Ouali, C., Dumouchel, P., Gupta, V..  2017.  Robust video fingerprints using positions of salient regions. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3041–3045.
This paper describes a video fingerprinting system that is highly robust to audio and video transformations. The proposed system adapts a robust audio fingerprint extraction approach to video fingerprinting. The audio fingerprinting system converts the spectrogram into binary images, and then encodes the positions of salient regions selected from each binary image. Visual features are extracted in a similar way from the video images. We propose two visual fingerprint generation methods where fingerprints encode the positions of salient regions of greyscale video images. Salient regions of the first method are selected based on the intensity values of the image, while the second method identifies the regions that represent the highest variations between two successive images. The similarity between two fingerprints is defined as the intersection between their elements. The search algorithm is speeded up by an efficient implementation on a Graphics Processing Unit (GPU). We evaluate the performance of the proposed video system on TRECVID 2009 and 2010 datasets, and we show that this system achieves promising results and outperforms other state-of-the-art video copy detection methods for queries that do not includes geometric transformations. In addition, we show the effectiveness of this system for a challenging audio+video copy detection task.
2018-04-02
Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.

2017-12-28
He, S., Shu, Y., Cui, X., Wei, C., Chen, J., Shi, Z..  2017.  A Trust Management Based Framework for Fault-Tolerant Barrier Coverage in Sensor Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Barrier coverage has been widely adopted to prevent unauthorized invasion of important areas in sensor networks. As sensors are typically placed outdoors, they are susceptible to getting faulty. Previous works assumed that faulty sensors are easy to recognize, e.g., they may stop functioning or output apparently deviant sensory data. In practice, it is, however, extremely difficult to recognize faulty sensors as well as their invalid output. We, in this paper, propose a novel fault-tolerant intrusion detection algorithm (TrusDet) based on trust management to address this challenging issue. TrusDet comprises of three steps: i) sensor-level detection, ii) sink-level decision by collective voting, and iii) trust management and fault determination. In the Step i) and ii), TrusDet divides the surveillance area into a set of fine- grained subareas and exploits temporal and spatial correlation of sensory output among sensors in different subareas to yield a more accurate and robust performance of barrier coverage. In the Step iii), TrusDet builds a trust management based framework to determine the confidence level of sensors being faulty. We implement TrusDet on HC- SR501 infrared sensors and demonstrate that TrusDet has a desired performance.

Suebsombut, P., Sekhari, A., Sureepong, P., Ueasangkomsate, P., Bouras, A..  2017.  The using of bibliometric analysis to classify trends and future directions on \#x201C;smart farm \#x201D;. 2017 International Conference on Digital Arts, Media and Technology (ICDAMT). :136–141.

Climate change has affected the cultivation in all countries with extreme drought, flooding, higher temperature, and changes in the season thus leaving behind the uncontrolled production. Consequently, the smart farm has become part of the crucial trend that is needed for application in certain farm areas. The aims of smart farm are to control and to enhance food production and productivity, and to increase farmers' profits. The advantages in applying smart farm will improve the quality of production, supporting the farm workers, and better utilization of resources. This study aims to explore the research trends and identify research clusters on smart farm using bibliometric analysis that has supported farming to improve the quality of farm production. The bibliometric analysis is the method to explore the relationship of the articles from a co-citation network of the articles and then science mapping is used to identify clusters in the relationship. This study examines the selected research articles in the smart farm field. The area of research in smart farm is categorized into two clusters that are soil carbon emission from farming activity, food security and farm management by using a VOSviewer tool with keywords related to research articles on smart farm, agriculture, supply chain, knowledge management, traceability, and product lifecycle management from Web of Science (WOS) and Scopus online database. The major cluster of smart farm research is the soil carbon emission from farming activity which impacts on climate change that affects food production and productivity. The contribution is to identify the trends on smart farm to develop research in the future by means of bibliometric analysis.

2017-12-27
Radhika, K. R., Nalini, M. K..  2017.  Biometric Image Encryption Using DNA Sequences and Chaotic Systems. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). :164–168.

Emerging communication technologies in distributed network systems require transfer of biometric digital images with high security. Network security is identified by the changes in system behavior which is either Dynamic or Deterministic. Performance computation is complex in dynamic system where cryptographic techniques are not highly suitable. Chaotic theory solves complex problems of nonlinear deterministic system. Several chaotic methods are combined to get hyper chaotic system for more security. Chaotic theory along with DNA sequence enhances security of biometric image encryption. Implementation proves the encrypted image is highly chaotic and resistant to various attacks.

2018-02-27
Schulz, T., Golatowski, F., Timmermann, D..  2017.  Evaluation of a Formalized Encryption Library for Safety-Critical Embedded Systems. 2017 IEEE International Conference on Industrial Technology (ICIT). :1153–1158.

Complex safety-critical devices require dependable communication. Dependability includes confidentiality and integrity as much as safety. Encrypting gateways with demilitarized zones, Multiple Independent Levels of Security architectures and the infamous Air Gap are diverse integration patterns for safety-critical infrastructure. Though resource restricted embedded safety devices still lack simple, certifiable, and efficient cryptography implementations. Following the recommended formal methods approach for safety-critical devices, we have implemented proven cryptography algorithms in the qualified model based language Scade as the Safety Leveraged Implementation of Data Encryption (SLIDE) library. Optimization for the synchronous dataflow language is discussed in the paper. The implementation for public-key based encryption and authentication is evaluated for real-world performance. The feasibility is shown by execution time benchmarks on an industrial safety microcontroller platform running a train control safety application.

2017-12-27
Arivazhagan, S., Jebarani, W. S. L., Kalyani, S. V., Abinaya, A. Deiva.  2017.  Mixed chaotic maps based encryption for high crypto secrecy. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–6.

In recent years, the chaos based cryptographic algorithms have enabled some new and efficient ways to develop secure image encryption techniques. In this paper, we propose a new approach for image encryption based on chaotic maps in order to meet the requirements of secure image encryption. The chaos based image encryption technique uses simple chaotic maps which are very sensitive to original conditions. Using mixed chaotic maps which works based on simple substitution and transposition techniques to encrypt the original image yields better performance with less computation complexity which in turn gives high crypto-secrecy. The initial conditions for the chaotic maps are assigned and using that seed only the receiver can decrypt the message. The results of the experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for image encryption.

2017-12-28
Ouffoué, G., Zaidi, F., Cavalli, A. R., Lallali, M..  2017.  Model-Based Attack Tolerance. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :68–73.

Software-based systems are nowadays complex and highly distributed. In contrast, existing intrusion detection mechanisms are not always suitable for protecting these systems against new and sophisticated attacks that increasingly appear. In this paper, we present a new generic approach that combines monitoring and formal methods in order to ensure attack-tolerance at a high level of abstraction. Our experiments on an authentication Web application show that this method is effective and realistic to tolerate a variety of attacks.

2017-12-27
Shyamala, N., Anusudha, K..  2017.  Reversible Chaotic Encryption Techniques For Images. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–5.

Image encryption takes been used by armies and governments to help top-secret communication. Nowadays, this one is frequently used for guarding info among various civilian systems. To perform secure image encryption by means of various chaotic maps, in such system a legal party may perhaps decrypt the image with the support of encryption key. This reversible chaotic encryption technique makes use of Arnold's cat map, in which pixel shuffling offers mystifying the image pixels based on the number of iterations decided by the authorized image owner. This is followed by other chaotic encryption techniques such as Logistic map and Tent map, which ensures secure image encryption. The simulation result shows the planned system achieves better NPCR, UACI, MSE and PSNR respectively.

2018-06-11
Kakanakov, N., Shopov, M..  2017.  Adaptive models for security and data protection in IoT with Cloud technologies. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1001–1004.

The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.

2018-09-28
Dem'yanov, D. N..  2017.  Analytical synthesis of reduced order observer for estimation of the bilinear dynamic system state. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.

The problem of analytical synthesis of the reduced order state observer for the bilinear dynamic system with scalar input and vector output has been considered. Formulas for calculation of the matrix coefficients of the nonlinear observer with estimation error asymptotically approaching zero have been obtained. Two modifications of observer dynamic equation have been proposed: the first one requires differentiation of an output signal and the second one does not. Based on the matrix canonization technology, the solvability conditions for the synthesis problem and analytical expressions for an acceptable set of solutions have been received. A precise step-by-step algorithm for calculating the observer coefficients has been offered. An example of the practical use of the developed algorithm has been given.

2018-03-19
Metongnon, L., Ezin, E. C., Sadre, R..  2017.  Efficient Probing of Heterogeneous IoT Networks. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1052–1058.

The Internet of Things leads to the inter-connectivity of a wide range of devices. This heterogeneity of hardware and software poses significant challenges to security. Constrained IoT devices often do not have enough resources to carry the overhead of an intrusion protection system or complex security protocols. A typical initial step in network security is a network scan in order to find vulnerable nodes. In the context of IoT, the initiator of the scan can be particularly interested in finding constrained devices, assuming that they are easier targets. In IoT networks hosting devices of various types, performing a scan with a high discovery rate can be a challenging task, since low-power networks such as IEEE 802.15.4 are easily overloaded. In this paper, we propose an approach to increase the efficiency of network scans by combining them with active network measurements. The measurements allow the scanner to differentiate IoT nodes by the used network technology. We show that the knowledge gained from this differentiation can be used to control the scan strategy in order to reduce probe losses.

2018-01-23
Baragchizadeh, A., Karnowski, T. P., Bolme, D. S., O’Toole, A. J..  2017.  Evaluation of Automated Identity Masking Method (AIM) in Naturalistic Driving Study (NDS). 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017). :378–385.

Identity masking methods have been developed in recent years for use in multiple applications aimed at protecting privacy. There is only limited work, however, targeted at evaluating effectiveness of methods-with only a handful of studies testing identity masking effectiveness for human perceivers. Here, we employed human participants to evaluate identity masking algorithms on video data of drivers, which contains subtle movements of the face and head. We evaluated the effectiveness of the “personalized supervised bilinear regression method for Facial Action Transfer (FAT)” de-identification algorithm. We also evaluated an edge-detection filter, as an alternate “fill-in” method when face tracking failed due to abrupt or fast head motions. Our primary goal was to develop methods for humanbased evaluation of the effectiveness of identity masking. To this end, we designed and conducted two experiments to address the effectiveness of masking in preventing recognition and in preserving action perception. 1- How effective is an identity masking algorithm?We conducted a face recognition experiment and employed Signal Detection Theory (SDT) to measure human accuracy and decision bias. The accuracy results show that both masks (FAT mask and edgedetection) are effective, but that neither completely eliminated recognition. However, the decision bias data suggest that both masks altered the participants' response strategy and made them less likely to affirm identity. 2- How effectively does the algorithm preserve actions? We conducted two experiments on facial behavior annotation. Results showed that masking had a negative effect on annotation accuracy for the majority of actions, with differences across action types. Notably, the FAT mask preserved actions better than the edge-detection mask. To our knowledge, this is the first study to evaluate a deidentification method aimed at preserving facial ac- ions employing human evaluators in a laboratory setting.

2017-12-28
Liu, H., Ditzler, G..  2017.  A fast information-theoretic approximation of joint mutual information feature selection. 2017 International Joint Conference on Neural Networks (IJCNN). :4610–4617.

Feature selection is an important step in data analysis to address the curse of dimensionality. Such dimensionality reduction techniques are particularly important when if a classification is required and the model scales in polynomial time with the size of the feature (e.g., some applications include genomics, life sciences, cyber-security, etc.). Feature selection is the process of finding the minimum subset of features that allows for the maximum predictive power. Many of the state-of-the-art information-theoretic feature selection approaches use a greedy forward search; however, there are concerns with the search in regards to the efficiency and optimality. A unified framework was recently presented for information-theoretic feature selection that tied together many of the works in over the past twenty years. The work showed that joint mutual information maximization (JMI) is generally the best options; however, the complexity of greedy search for JMI scales quadratically and it is infeasible on high dimensional datasets. In this contribution, we propose a fast approximation of JMI based on information theory. Our approach takes advantage of decomposing the calculations within JMI to speed up a typical greedy search. We benchmarked the proposed approach against JMI on several UCI datasets, and we demonstrate that the proposed approach returns feature sets that are highly consistent with JMI, while decreasing the run time required to perform feature selection.

2018-01-16
Rouf, Y., Shtern, M., Fokaefs, M., Litoiu, M..  2017.  A Hierarchical Architecture for Distributed Security Control of Large Scale Systems. 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). :118–120.

In the era of Big Data, software systems can be affected by its growing complexity, both with respect to functional and non-functional requirements. As more and more people use software applications over the web, the ability to recognize if some of this traffic is malicious or legitimate is a challenge. The traffic load of security controllers, as well as the complexity of security rules to detect attacks can grow to levels where current solutions may not suffice. In this work, we propose a hierarchical distributed architecture for security control in order to partition responsibility and workload among many security controllers. In addition, our architecture proposes a more simplified way of defining security rules to allow security to be enforced on an operational level, rather than a development level.