Biblio
Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip's time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.
Early detection of conflict potentials around the community is vital for the Central Java Regional Police Department, especially in the Analyst section of the Directorate of Security Intelligence. Performance in carrying out early detection will affect the peace and security of the community. The performance of potential conflict detection activities can be improved using an integrated early detection information system by shortening the time after observation, report preparation, information processing, and analysis. Developed using Unified Process as a software life cycle, the obtained result shows the time-based performance variables of the officers are significantly improved, including observation time, report production, data finding, and document formatting.
Although 6LoWPAN has brought about a revolutionary leap in networking for Low-power Lossy Networks, challenges still exist, including security concerns that are yet to answer. The most common type of attack on 6LoWPANs is the network layer, especially routing attacks, since the very members of a 6LoWPAN network have to carry out packet forwarding for the whole network. According to the initial purpose of IoT, these nodes are expected to be resource-deficient electronic devices with an utterly stochastic time pattern of attachment or detachment from a network. This issue makes preserving their authenticity or identifying their malignity hard, if not impossible. Since 6LoWPAN is a successor and a hybrid of previously developed wireless technologies, it is inherently prone to cyber-attacks shared with its predecessors, especially Wireless Sensor Networks (WSNs) and WPANs. On the other hand, multiple attacks have been uniquely developed for 6LoWPANs due to the unique design of the network layer protocol of 6LoWPANs known as RPL. While there exist publications about attacks on 6LoWPANs, a comprehensive survey exclusively on RPL-specific attacks is felt missing to bold the discrimination between the RPL-specific and non-specific attacks. Hence, the urge behind this paper is to gather all known attacks unique to RPL in a single volume.
Due to the widespread use of the Internet of Things (IoT) in recent years, the need for IoT technologies to handle communications with the rest of the globe has grown dramatically. Wireless sensor networks (WSNs) play a vital role in the operation of the IoT. The creation of Internet of Things operating systems (OS), which can handle the newly constructed IoT hardware, as well as new protocols and procedures for all communication levels, all of which are now in development, will pave the way for the future. When compared to other devices, these gadgets require a comparatively little amount of electricity, memory, and other resources. This has caused the scientific community to become more aware of the relevance of IoT device operating systems as a result of their findings. These devices may be made more versatile and powerful by including an operating system that contains real-time capabilities, kernel, networking, and other features, among other things. IEEE 802.15.4 networks are linked together using IPv6, which has a wide address space and so enables more devices to connect to the internet using the 6LoWPAN protocol. It is necessary to address some privacy and security issues that have arisen as a result of the widespread use of the Internet, notwithstanding the great benefits that have resulted. For the Internet of Things operating systems, this research has provided a network security architecture that ensures secure communication by utilizing the Cooja network simulator in combination with the Contiki operating system and demonstrate and explained how the nodes can protect from the network layer and physical layer attacks. Also, this research has depicted the energy consumption results of each designated node type during the authentication and communication process. Finally, proposed a few further improvements for the architecture which will enhance the network layer protection.