Biblio
Filters: Keyword is composability [Clear All Filters]
Comparative Study of Emerging Internet-of-Things in Traffic Management System. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :422–428.
.
2021. In recent years, the Internet-of-Things (IoT)-based traffic management system (ITMS) has attracted the attention of researchers from different fields, such as the automotive industry, academia and traffic management, due to its ability to enhance road safety and improve traffic efficiency. ITMS uses the Vehicle Ad-hoc Network (VANET) to communicate messages about traffic conditions or the event on the route to ensure the safety of the commuter. ITMS uses wireless communication technology for communication between different devices. Wireless communication has challenges to privacy and security. Challenges such as confidentiality, authentication, integrity, non-repudiation, identity, trust are major concerns of either security or privacy or both. This paper discusses the features of the traffic system, the features of the traffic management system (TMS) and the features of IoT that can be used in TMS with its challenges. Further, this paper analyses the work done in the last few years with the future scope of IoT in the TMS.
Comparing Performance and Efficiency of Designers and Design Intelligence. 2021 14th International Symposium on Computational Intelligence and Design (ISCID). :57—60.
.
2021. Intelligent design has been an emerging important area in the design. Existing works related to intelligent design use objective indicators to measure the quality of AI design by comparing the differences between AI-generated data and real data. However, the level of quality and efficiency of intelligent design compared to human designers remains unclear. We conducted user experiments to compare the design quality and efficiency of advanced design methods with that of junior designers. The conclusion is advanced intelligent design methods are comparable with junior designers on painting. Besides, intelligent design uses only 10% of the time spent by the junior designer in the tasks of layout design, color matching, and video editing.
A comparison of Differential Addition and Doubling in Binary Edwards Curves for Elliptic Curve Cryptography. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :12—18.
.
2021. Binary Edwards curves (BEC) over finite fields can be used as an additive cyclic elliptic curve group to enable elliptic curve cryptography (ECC), where the most time consuming is scalar multiplication. This operation is computed by means of the group operation, either point addition or point doubling. The most notorious property of these curves is that their group operation is complete, which mitigates the need to verify for special cases. Different formulae for the group operation in BECs have been reported in the literature. Of particular interest are those designed to work with the differential properties of the Montgomery ladder, which offer constant time computation of the scalar multiplication as well as reduced field operations count. In this work, we review and compare the complexity of BEC differential addition and doubling in terms of field operations. We also provide software implementations of scalar multiplications which employ these formulae under a fair scenario. Our work provides insights on the advantages of using BECs in ECC. Our study of the different formulae for group addition in BEC also showcases the advantages and limitations of the different design strategies employed in each case.
Compiler-Assisted Hardening of Embedded Software Against Interrupt Latency Side-Channel Attacks. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :667—682.
.
2021. Recent controlled-channel attacks exploit timing differences in the rudimentary fetch-decode-execute logic of processors. These new attacks also pose a threat to software on embedded systems. Even when Trusted Execution Environments (TEEs) are used, interrupt latency attacks allow untrusted code to extract application secrets from a vulnerable enclave by scheduling interruption of the enclave. Constant-time programming is effective against these attacks but, as we explain in this paper, can come with some disadvantages regarding performance. To deal with this new threat, we propose a novel algorithm that hardens programs during compilation by aligning the execution time of corresponding instructions in secret-dependent branches. Our results show that, on a class of embedded systems with deterministic execution times, this approach eliminates interrupt latency side-channel leaks and mitigates limitations of constant-time programming. We have implemented our approach in the LLVM compiler infrastructure for the San-cus TEE, which extends the openMSP430 microcontroller, and we discuss applicability to other architectures. We make our implementation and benchmarks available for further research.
On Compositional Information Flow Aware Refinement. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
.
2021. The concepts of information flow security and refinement are known to have had a troubled relationship ever since the seminal work of McLean. In this work we study refinements that support changes in data representation and semantics, including the addition of state variables that may induce new observational power or side channels. We propose a new epistemic approach to ignorance-preserving refinement where an abstract model is used as a specification of a system's permitted information flows, that may include the declassification of secret information. The core idea is to require that refinement steps must not induce observer knowledge that is not already available in the abstract model. Our study is set in the context of a class of shared variable multiagent models similar to interpreted systems in epistemic logic. We demonstrate the expressiveness of our framework through a series of small examples and compare our approach to existing, stricter notions of information-flow secure refinement based on bisimulations and noninterference preservation. Interestingly, noninterference preservation is not supported “out of the box” in our setting, because refinement steps may introduce new secrets that are independent of secrets already present at abstract level. To support verification, we first introduce a “cube-shaped” unwinding condition related to conditions recently studied in the context of value-dependent noninterference, kernel verification, and secure compilation. A fundamental problem with ignorance-preserving refinement, caused by the support for general data and observation refinement, is that sequential composability is lost. We propose a solution based on relational pre-and postconditions and illustrate its use together with unwinding on the oblivious RAM construction of Chung and Pass.
A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
.
2021. With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
A Comprehensive Survey on Vehicular Ad Hoc Networks (VANETs). 2021 International Conference on Advanced Computer Applications (ACA). :156–160.
.
2021. Vehicle Ad-hoc Networks (VANETs) have recently become an active research area. This is because of its important applications in the transportation field in which vehicles have severe position during activities of daily living in persons. In this paper, the basic background of the VANET from the Intelligent Transportation System (ITS), Mobile Ad-hoc Networks (MANETs), VANET standard and VANET characteristics are discussed. Second, the architecture from components and communications of the system are presented. Then, the critical challenges and future perspectives in this field are comprehensively reviewed. This paper could serve as a guide and reference in the design and development of any new techniques for VANETs. Moreover, this paper may help researchers and developers in the selection of the main features of VANET for their goals in one single document.
Compression Optimization For Automatic Verification of Network Configuration. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :1409–1412.
.
2021. In the era of big data and artificial intelligence, computer networks have become an important infrastructure, and the Internet has become ubiquitous. The most basic property of computer networks is reachability. The needs of the modern Internet mainly include cost, performance, reliability, and security. However, even for experienced network engineers, it is very difficult to manually conFigure the network to meet the needs of the modern large-scale Internet. The engineers often make mistakes, which can cause network paralysis, resulting in incalculable losses. Due to the development of automatic reasoning technology, automatic verification of network configuration is used to avoid mistakes. Network verification is at least an NP-C problem, so it is necessary to compress the network to reduce the network scale, thereby reducing the network verification time. This paper proposes a new model of network modeling, which is more suitable for the verification of network configuration on common protocols (such as RIP, BGP). On the basis of the existing compression method, two compression rules are added to compress the modeled network, reducing network verification time and conducting network reachability verification experiments on common networks. The experimental results are slightly better than the current compression methods.
Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :139—144.
.
2021. We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
Computational Intelligence Technologies Stack for Protecting the Critical Digital Infrastructures against Security Intrusions. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :118–122.
.
2021. Over the past decade, an infotelecommunication technology has made significant strides forward. With the advent of new generation wireless networks and the massive digitalization of industries, the object of protection has changed. The digital transformation has led to an increased opportunity for cybercriminals. The ability of computational intelligence to quickly process large amounts of data makes the intrusions tailored to specific environments. Polymorphic attacks that have mutations in their sequences of acts adapt to the communication environments, operating systems and service frameworks, and also try to deceive the defense tools. The poor protection of most Internet of Things devices allows the attackers to take control over them creating the megabotnets. In this regard, traditional methods of network protection become rigid and low-effective. The paper reviews a computational intelligence (CI) enabled software- defined network (SDN) for the network management, providing dynamic network reconfiguration to improve network performance and security control. Advanced machine learning and artificial neural networks are promising in detection of false data injections. Bioinformatics methods make it possible to detect polymorphic attacks. Swarm intelligence detects dynamic routing anomalies. Quantum machine learning is effective at processing the large volumes of security-relevant datasets. The CI technology stack provides a comprehensive protection against a variative cyberthreats scope.
A Computational Intelligent Analysis Scheme for Optimal Engine Behavior by Using Artificial Neural Network Learning Models and Harris Hawk Optimization. 2021 International Conference on Information Technology (ICIT). :361—365.
.
2021. Application of computational intelligence methods in data analysis and optimization problems can allow feasible and optimal solutions of complicated engineering problems. This study demonstrates an intelligent analysis scheme for determination of optimal operating condition of an internal combustion engine. For this purpose, an artificial neural network learning model is used to represent engine behavior based on engine data, and a metaheuristic optimization method is implemented to figure out optimal operating states of the engine according to the neural network learning model. This data analysis scheme is used for adjustment of optimal engine speed and fuel rate parameters to provide a maximum torque under Nitrous oxide emission constraint. Harris hawks optimization method is implemented to solve the proposed optimization problem. The solution of this optimization problem addresses eco-friendly enhancement of vehicle performance. Results indicate that this computational intelligent analysis scheme can find optimal operating regimes of an engine.
Conceptual Modelling of Criticality of Critical Infrastructure Nth Order Dependency Effect Using Neural Networks. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :127—131.
.
2021. This paper presents conceptual modelling of the criticality of critical infrastructure (CI) nth order dependency effect using neural networks. Incidentally, critical infrastructures are usually not stand-alone, they are mostly interconnected in some way thereby creating a complex network of infrastructures that depend on each other. The relationships between these infrastructures can be either unidirectional or bidirectional with possible cascading or escalating effect. Moreover, the dependency relationships can take an nth order, meaning that a failure or disruption in one infrastructure can cascade to nth interconnected infrastructure. The nth-order dependency and criticality problems depict a sequential characteristic, which can result in chronological cyber effects. Consequently, quantifying the criticality of infrastructure demands that the impact of its failure or disruption on other interconnected infrastructures be measured effectively. To understand the complex relational behaviour of nth order relationships between infrastructures, we model the behaviour of nth order dependency using Neural Network (NN) to analyse the degree of dependency and criticality of the dependent infrastructure. The outcome, which is to quantify the Criticality Index Factor (CIF) of a particular infrastructure as a measure of its risk factor can facilitate a collective response in the event of failure or disruption. Using our novel NN approach, a comparative view of CIFs of infrastructures or organisations can provide an efficient mechanism for Critical Information Infrastructure Protection and resilience (CIIPR) in a more coordinated and harmonised way nationally. Our model demonstrates the capability to measure and establish the degree of dependency (or interdependency) and criticality of CIs as a criterion for a proactive CIIPR.
ConDySTA: Context-Aware Dynamic Supplement to Static Taint Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :796–812.
.
2021. Static taint analyses are widely-applied techniques to detect taint flows in software systems. Although they are theoretically conservative and de-signed to detect all possible taint flows, static taint analyses almost always exhibit false negatives due to a variety of implementation limitations. Dynamic programming language features, inaccessible code, and the usage of multiple programming languages in a software project are some of the major causes. To alleviate this problem, we developed a novel approach, DySTA, which uses dynamic taint analysis results as additional sources for static taint analysis. However, naïvely adding sources causes static analysis to lose context sensitivity and thus produce false positives. Thus, we developed a hybrid context matching algorithm and corresponding tool, ConDySTA, to preserve context sensitivity in DySTA. We applied REPRODROID [1], a comprehensive benchmarking framework for Android analysis tools, to evaluate ConDySTA. The results show that across 28 apps (1) ConDySTA was able to detect 12 out of 28 taint flows which were not detected by any of the six state-of-the-art static taint analyses considered in ReproDroid, and (2) ConDySTA reported no false positives, whereas nine were reported by DySTA alone. We further applied ConDySTA and FlowDroid to 100 top Android apps from Google Play, and ConDySTA was able to detect 39 additional taint flows (besides 281 taint flows found by FlowDroid) while preserving the context sensitivity of FlowDroid.
Construction of immersive architectural wisdom guiding environment based on virtual reality. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :1464–1467.
.
2021. Construction of immersive architectural wisdom guiding environment based on virtual reality is studied in this paper. Emerging development of the computer smart systems have provided the engineers a novel solution for the platform construction. Network virtualization is currently the most unclear and controversial concept in the industry regarding the definition of virtualization subdivisions. To improve the current study, we use the VR system to implement the platform. The wisdom guiding environment is built through the virtual data modelling and the interactive connections. The platform is implemented through the software. The test on the data analysis accuracy and the interface optimization is conducted.
Construction of immersive scene roaming system of exhibition hall based on virtual reality technology. 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS). :1029–1033.
.
2021. On the basis of analyzing the development and application of virtual reality (VR) technology at home and abroad, and combining with the specific situation of the exhibition hall, this paper establishes an immersive scene roaming system of the exhibition hall. The system is completed by virtual scene modeling technology and virtual roaming interactive technology. The former uses modeling software to establish the basic model in the virtual scene, while the latter uses VR software to enable users to control their own roles to run smoothly in the roaming scene. In interactive roaming, this paper optimizes the A* pathfinding algorithm, uses binary heap to process data, and on this basis, further optimizes the pathfinding algorithm, so that when the pathfinding target is an obstacle, the pathfinder can reach the nearest place to the obstacle. Texture mapping technology, LOD technology and other related technologies are adopted in the modeling, thus finally realizing the immersive scene roaming system of the exhibition hall.
Construction of information security risk assessment model based on static game. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :647–650.
.
2021. Game theory is a branch of modern mathematics, which is a mathematical method to study how decision-makers should make decisions in order to strive for the maximum interests in the process of competition. In this paper, from the perspective of offensive and defensive confrontation, using game theory for reference, we build a dynamic evaluation model of information system security risk based on static game model. By using heisani transformation, the uncertainty of strategic risk of offensive and defensive sides is transformed into the uncertainty of each other's type. The security risk of pure defense strategy and mixed defense strategy is analyzed quantitatively, On this basis, an information security risk assessment algorithm based on static game model is designed.
Container-based Service State Management in Cloud Computing. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :487—493.
.
2021. In a cloud data center, the client requests are catered by placing the services in its servers. Such services are deployed through a sandboxing platform to ensure proper isolation among services from different users. Due to the lightweight nature, containers have become increasingly popular to support such sandboxing. However, for supporting effective and efficient data center resource usage with minimum resource footprints, improving the containers' consolidation ratio is significant for the cloud service providers. Towards this end, in this paper, we propose an exciting direction to significantly boost up the consolidation ratio of a data-center environment by effectively managing the containers' states. We observe that many cloud-based application services are event-triggered, so they remain inactive unless some external service request comes. We exploit the fact that the containers remain in an idle state when the underlying service is not active, and thus such idle containers can be checkpointed unless an external service request comes. However, the challenge here is to design an efficient mechanism such that an idle container can be resumed quickly to prevent the loss of the application's quality of service (QoS). We have implemented the system, and the evaluation is performed in Amazon Elastic Compute Cloud. The experimental results have shown that the proposed algorithm can manage the containers' states, ensuring the increase of consolidation ratio.
Contour Based Deep Learning Engine to Solve CAPTCHA. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:723—727.
.
2021. A 'Completely Automated Public Turing test to tell Computers and Humans Apart' or better known as CAPTCHA is a image based test used to determine the authenticity of a user (ie. whether the user is human or not). In today's world, almost all the web services, such as online shopping sites, require users to solve CAPTCHAs that must be read and typed correctly. The challenge is that recognizing the CAPTCHAs is a relatively easy task for humans, but it is still hard to solve for computers. Ideally, a well-designed CAPTCHA should be solvable by humans at least 90% of the time, while programs using appropriate resources should succeed in less than 0.01% of the cases. In this paper, a deep neural network architecture is presented to extract text from CAPTCHA images on various platforms. The central theme of the paper is to develop an efficient & intelligent model that converts image-based CAPTCHA to text. We used convolutional neural network based architecture design instead of the traditional methods of CAPTCHA detection using image processing segmentation modules. The model consists of seven layers to efficiently correlate image features to the output character sequence. We tried a wide variety of configurations, including various loss and activation functions. We generated our own images database and the efficacy of our model was proven by the accuracy levels of 99.7%.
Cooperative Machine Learning Techniques for Cloud Intrusion Detection. 2021 International Wireless Communications and Mobile Computing (IWCMC). :837–842.
.
2021. Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
Countering Concurrent Login Attacks in “Just Tap” Push-based Authentication: A Redesign and Usability Evaluations. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :21—36.
.
2021. In this paper, we highlight a fundamental vulnerability associated with the widely adopted “Just Tap” push-based authentication in the face of a concurrency attack, and propose the method REPLICATE, a redesign to counter this vulnerability. In the concurrency attack, the attacker launches the login session at the same time the user initiates a session, and the user may be fooled, with high likelihood, into accepting the push notification which corresponds to the attacker's session, thinking it is their own. The attack stems from the fact that the login notification is not explicitly mapped to the login session running on the browser in the Just Tap approach. REPLICATE attempts to address this fundamental flaw by having the user approve the login attempt by replicating the information presented on the browser session over to the login notification, such as by moving a key in a particular direction, choosing a particular shape, etc. We report on the design and a systematic usability study of REPLICATE. Even without being aware of the vulnerability, in general, participants placed multiple variants of REPLICATE in competition to the Just Tap and fairly above PIN-based authentication.
Covert Channel-Based Transmitter Authentication in Controller Area Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
.
2021. In recent years, the security of automotive Cyber-Physical Systems (CPSs) is facing urgent threats due to the widespread use of legacy in-vehicle communication systems. As a representative legacy bus system, the Controller Area Network (CAN) hosts Electronic Control Units (ECUs) that are crucial for the vehicles functioning. In this scenario, malicious actors can exploit the CAN vulnerabilities, such as the lack of built-in authentication and encryption schemes, to launch CAN bus attacks. In this paper, we present TACAN (Transmitter Authentication in CAN), which provides secure authentication of ECUs on the legacy CAN bus by exploiting the covert channels. TACAN turns upside-down the originally malicious concept of covert channels and exploits it to build an effective defensive technique that facilitates transmitter authentication. TACAN consists of three different covert channels: 1) Inter-Arrival Time (IAT)-based, 2) Least Significant Bit (LSB)-based, and 3) hybrid covert channels. In order to validate TACAN, we implement the covert channels on the University of Washington (UW) EcoCAR (Chevrolet Camaro 2016) testbed. We further evaluate the bit error, throughput, and detection performance of TACAN through extensive experiments using the EcoCAR testbed and a publicly available dataset collected from Toyota Camry 2010.
Conference Name: IEEE Transactions on Dependable and Secure Computing
Covert Identification Over Binary-Input Discrete Memoryless Channels. IEEE Transactions on Information Theory. 67:5387–5403.
.
2021. This paper considers the covert identification problem in which a sender aims to reliably convey an identification (ID) message to a set of receivers via a binary-input discrete memoryless channel (BDMC), and simultaneously to guarantee that the communication is covert with respect to a warden who monitors the communication via another independent BDMC. We prove a square-root law for the covert identification problem. This states that an ID message of size exp(exp($\Theta$($\surd$ n)) can be transmitted over n channel uses. We then characterize the exact pre-constant in the $\Theta$($\cdot$) notation. This constant is referred to as the covert identification capacity. We show that it equals the recently developed covert capacity in the standard covert communication problem, and somewhat surprisingly, the covert identification capacity can be achieved without any shared key between the sender and receivers. The achievability proof relies on a random coding argument with pulse-position modulation (PPM), coupled with a second stage which performs code refinements. The converse proof relies on an expurgation argument as well as results for channel resolvability with stringent input constraints.
Conference Name: IEEE Transactions on Information Theory
Covert Wireless Communications Under Quasi-Static Fading With Channel Uncertainty. IEEE Transactions on Information Forensics and Security. 16:1104–1116.
.
2021. Covert communications enable a transmitter to send information reliably in the presence of an adversary, who looks to detect whether the transmission took place or not. We consider covert communications over quasi-static block fading channels, where users suffer from channel uncertainty. We investigate the adversary Willie's optimal detection performance in two extreme cases, i.e., the case of perfect channel state information (CSI) and the case of channel distribution information (CDI) only. It is shown that in the large detection error regime, Willie's detection performances of these two cases are essentially indistinguishable, which implies that the quality of CSI does not help Willie in improving his detection performance. This result enables us to study the covert transmission design without the need to factor in the exact amount of channel uncertainty at Willie. We then obtain the optimal and suboptimal closed-form solution to the covert transmission design. Our result reveals fundamental difference in the design between the case of quasi-static fading channel and the previously studied case of non-fading AWGN channel.
Conference Name: IEEE Transactions on Information Forensics and Security
A Creation Cryptographic Protocol for the Division of Mutual Authentication and Session Key. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—6.
.
2021. In this paper is devoted a creation cryptographic protocol for the division of mutual authentication and session key. For secure protocols, suitable cryptographic algorithms were monitored.
Cross Layer Attacks and How to Use Them (for DNS Cache Poisoning, Device Tracking and More). 2021 IEEE Symposium on Security and Privacy (SP). :1179–1196.
.
2021. We analyze the prandom pseudo random number generator (PRNG) in use in the Linux kernel (which is the kernel of the Linux operating system, as well as of Android) and demonstrate that this PRNG is weak. The prandom PRNG is in use by many "consumers" in the Linux kernel. We focused on three consumers at the network level – the UDP source port generation algorithm, the IPv6 flow label generation algorithm and the IPv4 ID generation algorithm. The flawed prandom PRNG is shared by all these consumers, which enables us to mount "cross layer attacks" against the Linux kernel. In these attacks, we infer the internal state of the prandom PRNG from one OSI layer, and use it to either predict the values of the PRNG employed by the other OSI layer, or to correlate it to an internal state of the PRNG inferred from the other protocol.Using this approach we can mount a very efficient DNS cache poisoning attack against Linux. We collect TCP/IPv6 flow label values, or UDP source ports, or TCP/IPv4 IP ID values, reconstruct the internal PRNG state, then predict an outbound DNS query UDP source port, which speeds up the attack by a factor of x3000 to x6000. This attack works remotely, but can also be mounted locally, across Linux users and across containers, and (depending on the stub resolver) can poison the cache with an arbitrary DNS record. Additionally, we can identify and track Linux and Android devices – we collect TCP/IPv6 flow label values and/or UDP source port values and/or TCP/IPv4 ID fields, reconstruct the PRNG internal state and correlate this new state to previously extracted PRNG states to identify the same device.