Biblio
The main objective of the proposed work is to build a reliable and secure architecture for cloud servers where users may safely store and transfer their data. This platform ensures secure communication between the client and the server during data transfer. Furthermore, it provides a safe method for sharing and transferring files from one person to another. As a result, for ensuring safe data on cloud servers, this research work presents a secure architecture combining three DNA cryptography, HMAC, and a third party Auditor. In order to provide security by utilizing various strategies, a number of traditional and novel cryptographic methods are investigated. In the first step, data will be encrypted with the help of DNA cryptography, where the encoded document will be stored in the cloud server. In next step, create a HMAC value of encrypted file, which was stored on cloud by using secret key and sends to TPA. In addition, Third Party Auditor is used for authenticate the purity of stored documents in cloud at the time of verification TPA also create HMAC value from Cloud stored data and verify it. DNA-based cryptographic technique, hash based message authentic code and third party auditor will provide more secured framework for data security and integrity in cloud server.
Static analysis is a general name for various methods of program examination without actually executing it. In particular, it is widely used to discover errors and vulnerabilities in software. Taint analysis usually denotes the process of checking the flow of user-provided data in the program in order to find potential vulnerabilities. It can be performed either statically or dynamically. In the paper we evaluate several improvements for the static taint analyzer Irbis [1], which is based on a special case of interprocedural graph reachability problem - the so-called IFDS problem, originally proposed by Reps et al. [2]. The analyzer is currently being developed at the Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS). The evaluation is based on several real projects with known vulnerabilities and a subset of the Juliet Test Suite for C/C++ [3]. The chosen subset consists of more than 5 thousand tests for 11 different CWEs.
Distributed Denial-of-Service (DDoS) attacks pose a huge risk to the network and threaten its stability. A game theoretic approach for intrusion detection and prevention is proposed to avoid DDoS attacks in the internet. Game theory provides a control mechanism that automates the intrusion detection and prevention process within a network. In the proposed system, system-subject interaction is modeled as a 2-player Bayesian signaling zero sum game. The game's Nash Equilibrium gives a strategy for the attacker and the system such that neither can increase their payoff by changing their strategy unilaterally. Moreover, the Intent Objective and Strategy (IOS) of the attacker and the system are modeled and quantified using the concept of incentives. In the proposed system, the prevention subsystem consists of three important components namely a game engine, database and a search engine for computing the Nash equilibrium, to store and search the database for providing the optimum defense strategy. The framework proposed is validated via simulations using ns3 network simulator and has acquired over 80% detection rate, 90% prevention rate and 6% false positive alarms.