Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2022-06-08
Dhoot, Anshita, Zong, Boyang, Saeed, Muhammad Salman, Singh, Karan.  2021.  Security Analysis of Private Intellectual Property. 2021 International Conference on Engineering Management of Communication and Technology (EMCTECH). :1–7.

Intellectual Property Rights (IPR) results from years of research and wisdom by property owners, and it plays an increasingly important role in promoting economic development, technological progress, and cultural prosperity. Thus, we need to strengthen the degree of protection of IPR. However, as internet technology continues to open up the market for IPR, the ease of network operation has led to infringement of IPR in some cases. Intellectual property infringement has occurred in some cases. Also, Internet development's concealed and rapid nature has led to the fact that IPR infringers cannot be easily detected. This paper addresses how to protect the rights and interests of IPR holders in the context of the rapid development of the internet. This paper explains the IPR and proposes an algorithm to enhance security for a better security model to protect IPR. This proposes optimization techniques to detect intruder attacks for securing IPR, by using support vector machines (SVM), it provides better results to secure public and private intellectual data by optimizing technologies.

2022-02-25
Patil, Sonali, Kadam, Sarika, Katti, Jayashree.  2021.  Security Enhancement of Forensic Evidences Using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :263–268.

In today's digital era, data is most important in every phase of work. The storage and processing on data with security is the need of each and every application field. Data need to be tamper resistant due to possibility of alteration. Data can be represented and stored in heterogeneous format. There are chances of attack on information which is vital for particular organization. With rapid increase in cyber crime, attackers behave maliciously to alter those data. But it is having great impact on forensic evidences which is required for provenance. Therefore, it is required to maintain the reliability and provenance of digital evidences as it travels through various stages during forensic investigation. In this approach, there is a forensic chain in which generated report passes through various levels or intermediaries such as pathology laboratory, doctor, police department etc. To build the transparent system with immutability of forensic evidences, blockchain technology is more suitable. Blockchain technology provides the transfer of assets or evidence reports in transparent environment without central authority. In this paper blockchain based secure system for forensic evidences is proposed. The proposed system is implemented on Ethereum platform. The tampering of forensic evidence can be easily traced at any stage by anyone in the forensic chain. The security enhancement of forensic evidences is achieved through implementation on Ethereum platform with high integrity, traceability and immutability.

2022-02-07
Narayanankutty, Hrishikesh.  2021.  Self-Adapting Model-Based SDSec For IoT Networks Using Machine Learning. 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C). :92–93.
IoT networks today face a myriad of security vulnerabilities in their infrastructure due to its wide attack surface. Large-scale networks are increasingly adopting a Software-Defined Networking approach, it allows for simplified network control and management through network virtualization. Since traditional security mechanisms are incapable of handling virtualized environments, SDSec or Software-Defined Security is introduced as a solution to support virtualized infrastructure, specifically aimed at providing security solutions to SDN frameworks. To further aid large scale design and development of SDN frameworks, Model-Driven Engineering (MDE) has been proposed to be used at the design phase, since abstraction, automation and analysis are inherently key aspects of MDE. This provides an efficient approach to reducing large problems through models that abstract away the complex technicality of the total system. Making adaptations to these models to address security issues faced in IoT networks, largely reduces cost and improves efficiency. These models can be simulated, analysed and supports architecture model adaptation; model changes are then reflected back to the real system. We propose a model-driven security approach for SDSec networks that can self-adapt using machine learning to mitigate security threats. The overall design time changes can be monitored at run time through machine learning techniques (e.g. deep, reinforcement learning) for real time analysis. This approach can be tested in IoT simulation environments, for instance using the CAPS IoT modeling and simulation framework. Using self-adaptation of models and advanced machine learning for data analysis would ensure that the SDSec architecture adapts and improves over time. This largely reduces the overall attack surface to achieve improved end-to-end security in IoT environments.
2022-01-31
Grabatin, Michael, Hommel, Wolfgang.  2021.  Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.

Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.

2022-06-09
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

2022-05-05
Raab, Alexander, Mehlmann, Gert, Luther, Matthias, Sennewald, Tom, Schlegel, Steffen, Westermann, Dirk.  2021.  Steady-State and Dynamic Security Assessment for System Operation. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

This contribution provides the implementation of a holistic operational security assessment process for both steady-state security and dynamic stability. The merging of steady-state and dynamic security assessment as a sequential process is presented. A steady-state and dynamic modeling of a VSC-HVDC was performed including curative and stabilizing measures as remedial actions. The assessment process was validated by a case study on a modified version of the Nordic 32 system. Simulation results showed that measure selection based on purely steady-state contingency analysis can lead to loss of stability in time domain. A subsequent selection of measures on the basis of the dynamic security assessment was able to guarantee the operational security for the stationary N-1 scenario as well as the power system stability.

2022-01-10
Sahu, Abhijeet, Davis, Katherine.  2021.  Structural Learning Techniques for Bayesian Attack Graphs in Cyber Physical Power Systems. 2021 IEEE Texas Power and Energy Conference (TPEC). :1–6.

Updating the structure of attack graph templates based on real-time alerts from Intrusion Detection Systems (IDS), in an Industrial Control System (ICS) network, is currently done manually by security experts. But, a highly-connected smart power systems, that can inadvertently expose numerous vulnerabilities to intruders for targeting grid resilience, needs automatic fast updates on learning attack graph structures, instead of manual intervention, to enable fast isolation of compromised network to secure the grid. Hence, in this work, we develop a technique to first construct a prior Bayesian Attack Graph (BAG) based on a predefined threat model and a synthetic communication network for a cyber-physical power system. Further, we evaluate a few score-based and constraint-based structural learning algorithms to update the BAG structure based on real-time alerts, based on scalability, data dependency, time complexity and accuracy criteria.

2022-07-28
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-04-22
Afrifah, W., Epiphaniou, G., Maple, C..  2021.  Supply Chain Security Management through Data Process Decomposition: An Architecture Perspective. Competitive Advantage in the Digital Economy (CADE 2021). 2021:56—61.
In today's volatile environment, we have never been more reliant on a tightly knit supply chain (SC). Globalisation, mass manufacturing, and specialisation are now hallmarks of our integrated, industrialised world. Decision-makers rely heavily on accurate up-to-the-minute data. Even the tiniest interruption in data flow can have a huge effect on the quality of decision-making and performance. In the full interconnection paradigm, this dependency has inadvertently pushed device connectivity toward an Industrial Internet of Things (IIoT) approach. This has allowed the provision of 'added value resources' such as SC optimisation for Industry 4.0 (I4.0) or enhanced process controls. While system interconnectivity has increased, Internet of Things (IoT) and I4.0 SC protection measures have lagged behind. The root cause of this disparity is the existing mainstream security practices inherited from industrial networks and linking systems that neglect any specific security capability. This paper introduces the preliminary design of an I4.0 SC architecture that offers a complete protocol break about how exacting security functions could be implemented by isolation, a rigorous access control system, and surveillance to ensure the proposed architecture's end-to-end security to I4.0 SC.
2022-03-23
Chandavarkar, B. R., Shantanu, T K.  2021.  Sybil Attack Simulation and Mitigation in UnetStack. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01—07.

Underwater networks have the potential to enable unexplored applications and to enhance our ability to observe and predict the ocean. Underwater acoustic sensor networks (UASNs) are often deployed in unprecedented and hostile waters and face many security threats. Applications based on UASNs such as coastal defense, pollution monitoring, assisted navigation to name a few, require secure communication. A new set of communication protocols and cooperative coordination algorithms have been proposed to enable collaborative monitoring tasks. However, such protocols overlook security as a key performance indicator. Spoofing, altering, or replaying routing information can affect the entire network, making UASN vulnerable to routing attacks such as selective forwarding, sinkhole attack, Sybil attack, acknowledgement spoofing and HELLO flood attack. The lack of security against such threats is startling if maintained that security is indeed an important requirement in many emerging civilian and military applications. In this work, we look at one of the most prevalent attacks among UASNs which is Sybill attack and discuss mitigation approaches for it. Then, feasibly implemented the attack in UnetStack3 to simulate real-life scenario.

2022-02-04
Zhang, Mingyue.  2021.  System Component-Level Self-Adaptations for Security via Bayesian Games. 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :102–104.

Security attacks present unique challenges to self-adaptive system design due to the adversarial nature of the environment. However, modeling the system as a single player, as done in prior works in security domain, is insufficient for the system under partial compromise and for the design of fine-grained defensive strategies where the rest of the system with autonomy can cooperate to mitigate the impact of attacks. To deal with such issues, we propose a new self-adaptive framework incorporating Bayesian game and model the defender (i.e., the system) at the granularity of components in system architecture. The system architecture model is translated into a Bayesian multi-player game, where each component is modeled as an independent player while security attacks are encoded as variant types for the components. The defensive strategy for the system is dynamically computed by solving the pure equilibrium to achieve the best possible system utility, improving the resiliency of the system against security attacks.

2022-02-03
Lee, Hyo-Cheol, Lee, Seok-Won.  2021.  Towards Provenance-based Trust-aware Model for Socio-Technically Connected Self-Adaptive System. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :761—767.
In a socio-technically connected environment, self-adaptive systems need to cooperate with others to collect information to provide context-dependent functionalities to users. A key component of ensuring safe and secure cooperation is finding trustworthy information and its providers. Trust is an emerging quality attribute that represents the level of belief in the cooperative environments and serves as a promising solution in this regard. In this research, we will focus on analyzing trust characteristics and defining trust-aware models through the trust-aware goal model and the provenance model. The trust-aware goal model is designed to represent the trust-related requirements and their relationships. The provenance model is analyzed as trust evidence to be used for the trust evaluation. The proposed approach contributes to build a comprehensive understanding of trust and design a trust-aware self-adaptive system. In order to show the feasibility of the proposed approach, we will conduct a case study with the crowd navigation system for an unmanned vehicle system.
2022-08-26
VanYe, Christopher M., Li, Beatrice E., Koch, Andrew T., Luu, Mai N., Adekunle, Rahman O., Moghadasi, Negin, Collier, Zachary A., Polmateer, Thomas L., Barnes, David, Slutzky, David et al..  2021.  Trust and Security of Embedded Smart Devices in Advanced Logistics Systems. 2021 Systems and Information Engineering Design Symposium (SIEDS). :1—6.

This paper addresses security and risk management of hardware and embedded systems across several applications. There are three companies involved in the research. First is an energy technology company that aims to leverage electric- vehicle batteries through vehicle to grid (V2G) services in order to provide energy storage for electric grids. Second is a defense contracting company that provides acquisition support for the DOD's conventional prompt global strike program (CPGS). These systems need protections in their production and supply chains, as well as throughout their system life cycles. Third is a company that deals with trust and security in advanced logistics systems generally. The rise of interconnected devices has led to growth in systems security issues such as privacy, authentication, and secure storage of data. A risk analysis via scenario-based preferences is aided by a literature review and industry experts. The analysis is divided into various sections of Criteria, Initiatives, C-I Assessment, Emergent Conditions (EC), Criteria-Scenario (C-S) relevance and EC Grouping. System success criteria, research initiatives, and risks to the system are compiled. In the C-I Assessment, a rating is assigned to signify the degree to which criteria are addressed by initiatives, including research and development, government programs, industry resources, security countermeasures, education and training, etc. To understand risks of emergent conditions, a list of Potential Scenarios is developed across innovations, environments, missions, populations and workforce behaviors, obsolescence, adversaries, etc. The C-S Relevance rates how the scenarios affect the relevance of the success criteria, including cost, schedule, security, return on investment, and cascading effects. The Emergent Condition Grouping (ECG) collates the emergent conditions with the scenarios. The generated results focus on ranking Initiatives based on their ability to negate the effects of Emergent Conditions, as well as producing a disruption score to compare a Potential Scenario's impacts to the ranking of Initiatives. The results presented in this paper are applicable to the testing and evaluation of security and risk for a variety of embedded smart devices and should be of interest to developers, owners, and operators of critical infrastructure systems.

2022-02-04
Xu, Qizhen, Chen, Liwei, Shi, Gang.  2021.  Twine Stack: A Hybrid Mechanism Achieving Less Cost for Return Address Protection. 2021 IEEE 30th Asian Test Symposium (ATS). :7—12.
Return-oriented programming(ROP) is a prevalent technique that targets return addresses to hijack control flow. To prevent such attack, researchers mainly focus on either Shadow Stack or MAC-based mechanisms(message code authentication). But Shadow Stack suffers from additional memory overhead and information leakage, while MAC-based mechanisms(e.g. Zipper Stack) impose high runtime overhead for MAC calculations.In this paper, we propose Twine Stack, a hybrid and efficient return address protection mechanism with lightweight hardware extension. It utilizes a tiny hardware shadow stack to realize a new multi-chain Zipper Stack. Specifically, each entry in the shadow stack stores a return address and its MAC in each chain, allowing queueing calculation with just one hash module. At meantime, some return address verifications could be done by comparison with the hardware shadow stack, instead of calculation again. We implemented Twine Stack on RISC-V architecture, and evaluated it on FPGA board. Our experiments show that Twine Stack reduces over 95% hash verifications, and imposes merely 1.38% performance overhead with an area overhead of 974 LUTs and 726 flip flops. The result demonstrates that our hybrid scheme mitigates the drawbacks of each separate scheme.
2022-09-09
Wilke, Luca, Wichelmann, Jan, Sieck, Florian, Eisenbarth, Thomas.  2021.  undeSErVed trust: Exploiting Permutation-Agnostic Remote Attestation. 2021 IEEE Security and Privacy Workshops (SPW). :456—466.

The ongoing trend of moving data and computation to the cloud is met with concerns regarding privacy and protection of intellectual property. Cloud Service Providers (CSP) must be fully trusted to not tamper with or disclose processed data, hampering adoption of cloud services for many sensitive or critical applications. As a result, CSPs and CPU manufacturers are rushing to find solutions for secure and trustworthy outsourced computation in the Cloud. While enclaves, like Intel SGX, are strongly limited in terms of throughput and size, AMD’s Secure Encrypted Virtualization (SEV) offers hardware support for transparently protecting code and data of entire VMs, thus removing the performance, memory and software adaption barriers of enclaves. Through attestation of boot code integrity and means for securely transferring secrets into an encrypted VM, CSPs are effectively removed from the list of trusted entities. There have been several attacks on the security of SEV, by abusing I/O channels to encrypt and decrypt data, or by moving encrypted code blocks at runtime. Yet, none of these attacks have targeted the attestation protocol, the core of the secure computing environment created by SEV. We show that the current attestation mechanism of Zen 1 and Zen 2 architectures has a significant flaw, allowing us to manipulate the loaded code without affecting the attestation outcome. An attacker may abuse this weakness to inject arbitrary code at startup–and thus take control over the entire VM execution, without any indication to the VM’s owner. Our attack primitives allow the attacker to do extensive modifications to the bootloader and the operating system, like injecting spy code or extracting secret data. We present a full end-to-end attack, from the initial exploit to leaking the key of the encrypted disk image during boot, giving the attacker unthrottled access to all of the VM’s persistent data.

2022-07-13
Angelogianni, Anna, Politis, Ilias, Polvanesi, Pier Luigi, Pastor, Antonio, Xenakis, Christos.  2021.  Unveiling the user requirements of a cyber range for 5G security testing and training. 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

Cyber ranges are proven to be effective towards the direction of cyber security training. Nevertheless, the existing literature in the area of cyber ranges does not cover, to our best knowledge, the field of 5G security training. 5G networks, though, reprise a significant field for modern cyber security, introducing a novel threat landscape. In parallel, the demand for skilled cyber security specialists is high and still rising. Therefore, it is of utmost importance to provide all means to experts aiming to increase their preparedness level in the case of an unwanted event. The EU funded SPIDER project proposes an innovative Cyber Range as a Service (CRaaS) platform for 5G cyber security testing and training. This paper aims to present the evaluation framework, followed by SPIDER, for the extraction of the user requirements. To validate the defined user requirements, SPIDER leveraged of questionnaires which included both closed and open format questions and were circulated among the personnel of telecommunication providers, vendors, security service providers, managers, engineers, cyber security personnel and researchers. Here, we demonstrate a selected set of the most critical questions and responses received. From the conducted analysis we reach to some important conclusions regarding 5G testing and training capabilities that should be offered by a cyber range, in addition to the analysis of the different perceptions between cyber security and 5G experts.

2022-03-09
Chandankhede, Pankaj H., Titarmare, Abhijit S., Chauhvan, Sarang.  2021.  Voice Recognition Based Security System Using Convolutional Neural Network. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :738—743.
Following review depicts a unique speech recognition technique, based on planned analysis and utilization of Neural Network and Google API using speech’s characteristics. Multifactor security system pioneered for the authentication of vocal modalities and identification. Undergone project drives completely unique strategy of independent convolution layers structure and involvement of totally unique convolutions includes spectrum and Mel-frequency cepstral coefficient. This review takes in the statistical analysis of sound using scaled up and scaled down spectrograms, conjointly by exploitation the Google Speech-to-text API turns speech to pass code, it will be cross-verified for extended security purpose. Our study reveals that the incorporated methodology and the result provided elucidate the inclination of research in this area and encouraged us to advance in this field.
2022-01-31
Velez, Miguel, Jamshidi, Pooyan, Siegmund, Norbert, Apel, Sven, Kästner, Christian.  2021.  White-Box Analysis over Machine Learning: Modeling Performance of Configurable Systems. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1072–1084.

Performance-influence models can help stakeholders understand how and where configuration options and their interactions influence the performance of a system. With this understanding, stakeholders can debug performance behavior and make deliberate configuration decisions. Current black-box techniques to build such models combine various sampling and learning strategies, resulting in tradeoffs between measurement effort, accuracy, and interpretability. We present Comprex, a white-box approach to build performance-influence models for configurable systems, combining insights of local measurements, dynamic taint analysis to track options in the implementation, compositionality, and compression of the configuration space, without relying on machine learning to extrapolate incomplete samples. Our evaluation on 4 widely-used, open-source projects demonstrates that Comprex builds similarly accurate performance-influence models to the most accurate and expensive black-box approach, but at a reduced cost and with additional benefits from interpretable and local models.

2022-12-02
Mohammed, Mahmood, Talburt, John R., Dagtas, Serhan, Hollingsworth, Melissa.  2021.  A Zero Trust Model Based Framework For Data Quality Assessment. 2021 International Conference on Computational Science and Computational Intelligence (CSCI). :305—307.

Zero trust security model has been picking up adoption in various organizations due to its various advantages. Data quality is still one of the fundamental challenges in data curation in many organizations where data consumers don’t trust data due to associated quality issues. As a result, there is a lack of confidence in making business decisions based on data. We design a model based on the zero trust security model to demonstrate how the trust of data consumers can be established. We present a sample application to distinguish the traditional approach from the zero trust based data quality framework.

Wylde, Allison.  2021.  Zero trust: Never trust, always verify. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—4.

This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.

2022-03-01
Sarihi, Amin, Patooghy, Ahmad, Hasanzadeh, Mahdi, Abdelrehim, Mostafa, Badawy, Abdel-Hameed A..  2021.  Securing Network-on-Chips via Novel Anonymous Routing. 2021 15th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). :29–34.
Network-on-Chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-Chips (SoCs). However, the shared communication resources in NoCs, e.g., channels, buffers, and routers might be used to conduct attacks compromising the security of NoC-based SoCs. Almost all of the proposed encryption-based protection methods in the literature need to leave some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This uncovers the source/destination information of the packet to malicious routers, which can be used in various attacks. In this paper, we propose the idea of secure anonymous routing with minimal hardware overhead to hide the source/destination information while exchanging secure information over the network. The proposed method uses a novel source-routing algorithm that works with encrypted destination addresses and prevents malicious routers from discovering the source/destination of secure packets. To support our proposal, we have designed and implemented a new NoC architecture that works with encrypted addresses. The conducted hardware evaluations show that the proposed security solution combats the security threats at an affordable cost of 1% area and 10% power overheads chip-wide.
2022-01-10
Li, Yanjie.  2021.  The Application Analysis of Artificial Intelligence in Computer Network Technology. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1126–1129.
In the information age, computer network technology has covered different areas of social life and involved various fields, and artificial intelligence, as an emerging technology with a very rapid development momentum in recent years, is important in promoting the development of computer network systems. This article explains the concept of artificial intelligence technology, describes the problems faced by computer networks, further analyses the advantages of artificial intelligence and the inevitability of application in network technology, and then studies the application of artificial intelligence in computer network technology.
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
2022-01-25
Cosic, Jasmin, Schlehuber, Christian, Morog, Drazen.  2021.  Digital Forensic Investigation Process in Railway Environment. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
The digitalization process did not circumvent either railway domain. With new technology and new functionality, such as digital interlocking system, automated train operation, object recognition, GPS positioning, traditional railway domain got a vulnerability that can be exploited. Another issue is usage of CotS (Commercial-of-the-Shelf) hardware and software and openness of traditionally closed system. Most of published similar paper are focused on cyber security and security & safety model for securing of assessment in this kind of domain, but this paper will deal with this upcoming railway technology and digital investigation process in such kind of environment. Digital investigation process will be presented, but not only in ICS and SCADA system, but also in specific, railway environment. Framework for investigation process and for maintaining chain of custody in railway domain will be proposed.
Jinhui, Yuan, Hongwei, Zhou, Laishun, Zhang.  2021.  F-SGX: Next Generation SGX for Trusted Computing. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :673–677.
The existing methods of constructing a trusted computing environment do not fully meet the requirements. Intel SGX provides a new hardware foundation for the construction of trusted computing environment. However, existing SGX still faces problems such as side channel attacks. To overcome it, this paper present F-SGX which is the future SGX for trusting computing. In our opinion, F-SGX hold stronger isolation than current SGX, and reduce the dependence of enclave on host operating system. Furthermore, F-SGX hold a private key for the attestation. We believe that F-SGX can further provide better support for trusting computing environments while there is a good balance between isolation and dependencies.