Biblio
The fingerprint sensor based on pMUTs was reported [1]. Spatial resolution of the image depends on the size of the acoustic source when a plane wave is used. If the size of the acoustic source is smaller, piezoelectric films with high dielectric constant are required. In this study, in order to obtain small acoustic source, we proposed Pb(Zrx Th-x)O3 (PZT) epitaxial transducers with high dielectric constant. PbTiO3 (PTO) epitaxial films were grown on conductive La-SrTiO3 (STO) substrate by RF magnetron sputtering. Longitudinal wave conversion loss of PTO transducers was measured by a network analyzer. The thermoplastic elastomer was used instead of real fingerprint. We confirmed that conversion loss of piezoelectric film/substrate structure was increased by contacting the elastomer due the change of reflection coefficient of the substrate bottom/elastomer interface. Minimum conversion loss images were obtained by mechanically scanning the soft probe on the transducer surface. We achieved the detection of the fingerprint phantom based on the elastomer in the GHz.
Windows is one of the popular operating systems in use today, while Universal Serial Bus (USB) is one of the mechanisms used by many people with practical plug and play functions. USB has long been used as a vector of attacks on computers. One method of attack is Keylogger. The Keylogger can take advantage of existing vulnerabilities in the Windows 10 operating system attacks carried out in the form of recording computer keystroke activity without the victim knowing. In this research, an attack will be carried out by running a Powershell Script using BadUSB to be able to activate the Keylogger program. The script is embedded in the Arduino Pro Micro device. The results obtained in the Keyboard Injection Attack research using Arduino Pro Micro were successfully carried out with an average time needed to run the keylogger is 7.474 seconds with a computer connected to the internet. The results of the keylogger will be sent to the attacker via email.
Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.
This paper describe most popular IoT protocols used for IoT embedded systems and research their advantage and disadvantage. Hardware stage used in this experiment is described in this article - it is used Esp32 and programming language C. It is very important to use corrected IoT protocol that is determines of purpose, hardware and software of system. There are so different IoT protocols, because they are cover vary requirements for vary cases.
Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.
With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.
Today the integrity of digital documents and the authenticity of their origin is often hard to verify. Existing Public Key Infrastructures (PKIs) are capable of certifying digital identities but do not provide solutions to immutably store signatures, and the process of certification is often not transparent. In this work we propose Veritaa, a Distributed Public Key Infrastructure and Signature Store (DPKISS). The major innovation of Veritaa is the Graph of Trust, a directed graph that uses relations between identity claims to certify the identities and stores signed relations to digital document identifiers. The distributed architecture of Veritaa and the Graph of Trust enables a transparent certification process. To ensure non-repudiation and immutability of all actions that have been signed on the Graph of Trust, an application specific Distributed Ledger Technology (DLT) is used as secure storage. In this work a reference implementation of the proposed architecture was designed and implemented. Furthermore, a testbed was created and used for the evaluation of Veritaa. The evaluation of Veritaa shows the benefits and the high performance of the proposed architecture.