Biblio

Found 1065 results

Filters: Keyword is machine learning  [Clear All Filters]
2022-12-09
Pandey, Amit, Genale, Assefa Senbato, Janga, Vijaykumar, Sundaram, B. Barani, Awoke, Desalegn, Karthika, P..  2022.  Analysis of Efficient Network Security using Machine Learning in Convolutional Neural Network Methods. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :170—173.
Several excellent devices can communicate without the need for human intervention. It is one of the fastest-growing sectors in the history of computing, with an estimated 50 billion devices sold by the end of 2020. On the one hand, IoT developments play a crucial role in upgrading a few simple, intelligent applications that can increase living quality. On the other hand, the security concerns have been noted to the cross-cutting idea of frameworks and the multidisciplinary components connected with their organization. As a result, encryption, validation, access control, network security, and application security initiatives for gadgets and their inherent flaws cannot be implemented. It should upgrade existing security measures to ensure that the ML environment is sufficiently protected. Machine learning (ML) has advanced tremendously in the last few years. Machine insight has evolved from a research center curiosity to a sensible instrument in a few critical applications.
2022-12-20
Liu, Xiaolei, Li, Xiaoyu, Zheng, Desheng, Bai, Jiayu, Peng, Yu, Zhang, Shibin.  2022.  Automatic Selection Attacks Framework for Hard Label Black-Box Models. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–7.

The current adversarial attacks against machine learning models can be divided into white-box attacks and black-box attacks. Further the black-box can be subdivided into soft label and hard label black-box, but the latter has the deficiency of only returning the class with the highest prediction probability, which leads to the difficulty in gradient estimation. However, due to its wide application, it is of great research significance and application value to explore hard label blackbox attacks. This paper proposes an Automatic Selection Attacks Framework (ASAF) for hard label black-box models, which can be explained in two aspects based on the existing attack methods. Firstly, ASAF applies model equivalence to select substitute models automatically so as to generate adversarial examples and then completes black-box attacks based on their transferability. Secondly, specified feature selection and parallel attack method are proposed to shorten the attack time and improve the attack success rate. The experimental results show that ASAF can achieve more than 90% success rate of nontargeted attack on the common models of traditional dataset ResNet-101 (CIFAR10) and InceptionV4 (ImageNet). Meanwhile, compared with FGSM and other attack algorithms, the attack time is reduced by at least 89.7% and 87.8% respectively in two traditional datasets. Besides, it can achieve 90% success rate of attack on the online model, BaiduAI digital recognition. In conclusion, ASAF is the first automatic selection attacks framework for hard label blackbox models, in which specified feature selection and parallel attack methods speed up automatic attacks.

2023-09-20
Dixit, Utkarsh, Bhatia, Suman, Bhatia, Pramod.  2022.  Comparison of Different Machine Learning Algorithms Based on Intrusion Detection System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:667—672.
An IDS is a system that helps in detecting any kind of doubtful activity on a computer network. It is capable of identifying suspicious activities at both the levels i.e. locally at the system level and in transit at the network level. Since, the system does not have its own dataset as a result it is inefficient in identifying unknown attacks. In order to overcome this inefficiency, we make use of ML. ML assists in analysing and categorizing attacks on diverse datasets. In this study, the efficacy of eight machine learning algorithms based on KDD CUP99 is assessed. Based on our implementation and analysis, amongst the eight Algorithms considered here, Support Vector Machine (SVM), Random Forest (RF) and Decision Tree (DT) have the highest testing accuracy of which got SVM does have the highest accuracy
Samia, Bougareche, Soraya, Zehani, Malika, Mimi.  2022.  Fashion Images Classification using Machine Learning, Deep Learning and Transfer Learning Models. 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA). :1—5.
Fashion is the way we present ourselves which mainly focuses on vision, has attracted great interest from computer vision researchers. It is generally used to search fashion products in online shopping malls to know the descriptive information of the product. The main objectives of our paper is to use deep learning (DL) and machine learning (ML) methods to correctly identify and categorize clothing images. In this work, we used ML algorithms (support vector machines (SVM), K-Nearest Neirghbors (KNN), Decision tree (DT), Random Forest (RF)), DL algorithms (Convolutionnal Neurals Network (CNN), AlexNet, GoogleNet, LeNet, LeNet5) and the transfer learning using a pretrained models (VGG16, MobileNet and RestNet50). We trained and tested our models online using google colaboratory with Tensorflow/Keras and Scikit-Learn libraries that support deep learning and machine learning in Python. The main metric used in our study to evaluate the performance of ML and DL algorithms is the accuracy and matrix confusion. The best result for the ML models is obtained with the use of ANN (88.71%) and for the DL models is obtained for the GoogleNet architecture (93.75%). The results obtained showed that the number of epochs and the depth of the network have an effect in obtaining the best results.
2023-02-03
Alkawaz, Mohammed Hazim, Joanne Steven, Stephanie, Mohammad, Omar Farook, Gapar Md Johar, Md.  2022.  Identification and Analysis of Phishing Website based on Machine Learning Methods. 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE). :246–251.
People are increasingly sharing their details online as internet usage grows. Therefore, fraudsters have access to a massive amount of information and financial activities. The attackers create web pages that seem like reputable sites and transmit the malevolent content to victims to get them to provide subtle information. Prevailing phishing security measures are inadequate for detecting new phishing assaults. To accomplish this aim, objective to meet for this research is to analyses and compare phishing website and legitimate by analyzing the data collected from open-source platforms through a survey. Another objective for this research is to propose a method to detect fake sites using Decision Tree and Random Forest approaches. Microsoft Form has been utilized to carry out the survey with 30 participants. Majority of the participants have poor awareness and phishing attack and does not obverse the features of interface before accessing the search browser. With the data collection, this survey supports the purpose of identifying the best phishing website detection where Decision Tree and Random Forest were trained and tested. In achieving high number of feature importance detection and accuracy rate, the result demonstrates that Random Forest has the best performance in phishing website detection compared to Decision Tree.
2023-08-25
Zheng, Chaofan, Hu, Wenhui, Li, Tianci, Liu, Xueyang, Zhang, Jinchan, Wang, Litian.  2022.  An Insider Threat Detection Method Based on Heterogeneous Graph Embedding. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :11—16.
Insider threats have high risk and concealment characteristics, which makes traditional anomaly detection methods less effective in insider threat detection. Existing detection methods ignore the logical relationship between user behaviors and the consistency of behavior sequences among homogeneous users, resulting in poor model effects. We propose an insider threat detection method based on internal user heterogeneous graph embedding. Firstly, according to the characteristics of CERT data, comprehensively consider the relationship between users, the time sequence, and logical relationship, and construct a heterogeneous graph. In the second step, according to the characteristics of heterogeneous graphs, the embedding learning of graph nodes is carried out according to random walk and Word2vec. Finally, we propose an Insider Threat Detection Design (ITDD) model which can map and the user behavior sequence information into a high-dimensional feature space. In the CERT r5.2 dataset, compared with a variety of traditional machine learning methods, the effect of our method is significantly better than the final result.
2023-09-18
Amer, Eslam, Samir, Adham, Mostafa, Hazem, Mohamed, Amer, Amin, Mohamed.  2022.  Malware Detection Approach Based on the Swarm-Based Behavioural Analysis over API Calling Sequence. 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :27—32.
The rapidly increasing malware threats must be coped with new effective malware detection methodologies. Current malware threats are not limited to daily personal transactions but dowelled deeply within large enterprises and organizations. This paper introduces a new methodology for detecting and discriminating malicious versus normal applications. In this paper, we employed Ant-colony optimization to generate two behavioural graphs that characterize the difference in the execution behavior between malware and normal applications. Our proposed approach relied on the API call sequence generated when an application is executed. We used the API calls as one of the most widely used malware dynamic analysis features. Our proposed method showed distinctive behavioral differences between malicious and non-malicious applications. Our experimental results showed a comparative performance compared to other machine learning methods. Therefore, we can employ our method as an efficient technique in capturing malicious applications.
2023-06-16
Ren, Lijuan, Wang, Tao, Seklouli, Aicha Sekhari, Zhang, Haiqing, Bouras, Abdelaziz.  2022.  Missing Values for Classification of Machine Learning in Medical data. 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD). :101—106.
Missing values are an unavoidable problem for classification tasks of machine learning in medical data. With the rapid development of the medical system, large scale medical data is increasing. Missing values increase the difficulty of mining hidden but useful information in these medical datasets. Deletion and imputation methods are the most popular methods for dealing with missing values. Existing studies ignored to compare and discuss the deletion and imputation methods of missing values under the row missing rate and the total missing rate. Meanwhile, they rarely used experiment data sets that are mixed-type and large scale. In this work, medical data sets of various sizes and mixed-type are used. At the same time, performance differences of deletion and imputation methods are compared under the MCAR (Missing Completely At Random) mechanism in the baseline task using LR (Linear Regression) and SVM (Support Vector Machine) classifiers for classification with the same row and total missing rates. Experimental results show that under the MCAR missing mechanism, the performance of two types of processing methods is related to the size of datasets and missing rates. As the increasing of missing rate, the performance of two types for processing missing values decreases, but the deletion method decreases faster, and the imputation methods based on machine learning have more stable and better classification performance on average. In addition, small data sets are easily affected by processing methods of missing values.
2023-02-17
Ryndyuk, V. A., Varakin, Y. S., Pisarenko, E. A..  2022.  New Architecture of Transformer Networks for Generating Natural Dialogues. 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
The new architecture of transformer networks proposed in the work can be used to create an intelligent chat bot that can learn the process of communication and immediately model responses based on what has been said. The essence of the new mechanism is to divide the information flow into two branches containing the history of the dialogue with different levels of granularity. Such a mechanism makes it possible to build and develop the personality of a dialogue agent in the process of dialogue, that is, to accurately imitate the natural behavior of a person. This gives the interlocutor (client) the feeling of talking to a real person. In addition, making modifications to the structure of such a network makes it possible to identify a likely attack using social engineering methods. The results obtained after training the created system showed the fundamental possibility of using a neural network of a new architecture to generate responses close to natural ones. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. The new technology can be used in social engineering attack detection systems, which is a big problem at present. The novelty and prospects of the proposed architecture of the neural network also lies in the possibility of creating on its basis dialogue systems with a high level of biological plausibility.
ISSN: 2769-3538
2022-12-01
Fujita, Koji, Shibahara, Toshiki, Chiba, Daiki, Akiyama, Mitsuaki, Uchida, Masato.  2022.  Objection!: Identifying Misclassified Malicious Activities with XAI. ICC 2022 - IEEE International Conference on Communications. :2065—2070.
Many studies have been conducted to detect various malicious activities in cyberspace using classifiers built by machine learning. However, it is natural for any classifier to make mistakes, and hence, human verification is necessary. One method to address this issue is eXplainable AI (XAI), which provides a reason for the classification result. However, when the number of classification results to be verified is large, it is not realistic to check the output of the XAI for all cases. In addition, it is sometimes difficult to interpret the output of XAI. In this study, we propose a machine learning model called classification verifier that verifies the classification results by using the output of XAI as a feature and raises objections when there is doubt about the reliability of the classification results. The results of experiments on malicious website detection and malware detection show that the proposed classification verifier can efficiently identify misclassified malicious activities.
2023-05-12
Pupezescu, Valentin, Pupezescu, Marilena-Cătălina, Perișoară, Lucian-Andrei.  2022.  Optimizations of Database Management Systems for Real Time IoT Edge Applications. 2022 23rd International Carpathian Control Conference (ICCC). :171–176.

The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.

2023-06-22
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-02-17
Sharma, Pradeep Kumar, Kumar, Brijesh, Tyagi, S.S.  2022.  STADS: Security Threats Assessment and Diagnostic System in Software Defined Networking (SDN). 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:744–751.
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
2023-03-31
Mudgal, Akshay, Bhatia, Shaveta.  2022.  A Step Towards Improvement in Classical Honeypot Security System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:720–725.
Data security is a vast term that doesn’t have any limits, but there are a certain amount of tools and techniques that could help in gaining security. Honeypot is among one of the tools that are designated and designed to protect the security of a network but in a very dissimilar manner. It is a system that is designed and developed to be compromised and exploited. Honeypots are meant to lure the invaders, but due to advancements in computing systems parallelly, the intruding technologies are also attaining their gigantic influence. In this research work, an approach involving apache-spark (a Big Data Technique) would be introduced in order to use it with the Honeypot System. This work includes an extensive study based on several research papers, through which elaborated experiment-based result has been expressed on the best known open-source honeypot systems. The preeminent possible method of using The Honeypot with apache spark in the sequential channel would also be proposed with the help of a framework diagram.
2023-02-17
SAHBI, Amina, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  Artificial Intelligence for SDN Security: Analysis, Challenges and Approach Proposal. 2022 15th International Conference on Security of Information and Networks (SIN). :01–07.
The dynamic state of networks presents a challenge for the deployment of distributed applications and protocols. Ad-hoc schedules in the updating phase might lead to a lot of ambiguity and issues. By separating the control and data planes and centralizing control, Software Defined Networking (SDN) offers novel opportunities and remedies for these issues. However, software-based centralized architecture for distributed environments introduces significant challenges. Security is a main and crucial issue in SDN. This paper presents a deep study of the state-of-the-art of security challenges and solutions for the SDN paradigm. The conducted study helped us to propose a dynamic approach to efficiently detect different security violations and incidents caused by network updates including forwarding loop, forwarding black hole, link congestion, network policy violation, etc. Our solution relies on an intelligent approach based on the use of Machine Learning and Artificial Intelligence Algorithms.
2023-02-24
Coleman, Jared, Kiamari, Mehrdad, Clark, Lillian, D'Souza, Daniel, Krishnamachari, Bhaskar.  2022.  Graph Convolutional Network-based Scheduler for Distributing Computation in the Internet of Robotic Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1070—1075.
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
2023-06-22
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

2023-05-11
Teo, Jia Wei, Gunawan, Sean, Biswas, Partha P., Mashima, Daisuke.  2022.  Evaluating Synthetic Datasets for Training Machine Learning Models to Detect Malicious Commands. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :315–321.
Electrical substations in power grid act as the critical interface points for the transmission and distribution networks. Over the years, digital technology has been integrated into the substations for remote control and automation. As a result, substations are more prone to cyber attacks and exposed to digital vulnerabilities. One of the notable cyber attack vectors is the malicious command injection, which can lead to shutting down of substations and subsequently power outages as demonstrated in Ukraine Power Plant Attack in 2015. Prevailing measures based on cyber rules (e.g., firewalls and intrusion detection systems) are often inadequate to detect advanced and stealthy attacks that use legitimate-looking measurements or control messages to cause physical damage. Additionally, defenses that use physics-based approaches (e.g., power flow simulation, state estimation, etc.) to detect malicious commands suffer from high latency. Machine learning serves as a potential solution in detecting command injection attacks with high accuracy and low latency. However, sufficient datasets are not readily available to train and evaluate the machine learning models. In this paper, focusing on this particular challenge, we discuss various approaches for the generation of synthetic data that can be used to train the machine learning models. Further, we evaluate the models trained with the synthetic data against attack datasets that simulates malicious commands injections with different levels of sophistication. Our findings show that synthetic data generated with some level of power grid domain knowledge helps train robust machine learning models against different types of attacks.
2023-07-20
Mell, Peter.  2022.  The Generation of Software Security Scoring Systems Leveraging Human Expert Opinion. 2022 IEEE 29th Annual Software Technology Conference (STC). :116—124.

While the existence of many security elements in software can be measured (e.g., vulnerabilities, security controls, or privacy controls), it is challenging to measure their relative security impact. In the physical world we can often measure the impact of individual elements to a system. However, in cyber security we often lack ground truth (i.e., the ability to directly measure significance). In this work we propose to solve this by leveraging human expert opinion to provide ground truth. Experts are iteratively asked to compare pairs of security elements to determine their relative significance. On the back end our knowledge encoding tool performs a form of binary insertion sort on a set of security elements using each expert as an oracle for the element comparisons. The tool not only sorts the elements (note that equality may be permitted), but it also records the strength or degree of each relationship. The output is a directed acyclic ‘constraint’ graph that provides a total ordering among the sets of equivalent elements. Multiple constraint graphs are then unified together to form a single graph that is used to generate a scoring or prioritization system.For our empirical study, we apply this domain-agnostic measurement approach to generate scoring/prioritization systems in the areas of vulnerability scoring, privacy control prioritization, and cyber security control evaluation.

2023-02-17
Anderegg, Alfred H. Andy, Ferrell, Uma D..  2022.  Assurance Case Along a Safety Continuum. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–10.
The FAA proposes Safety Continuum that recognizes the public expectation for safety outcomes vary with aviation sectors that have different missions, aircraft, and environments. The purpose is to align the rigor of oversight to the public expectations. An aircraft, its variants or derivatives may be used in operations with different expectations. The differences in mission might bring immutable risks for some applications that reuse or revise the original aircraft type design. The continuum enables a more agile design approval process for innovations in the context of a dynamic ecosystems, addressing the creation of variants for different sectors and needs. Since an aircraft type design can be reused in various operations under part 91 or 135 with different mission risks the assurance case will have many branches reflecting the variants and derivatives.This paper proposes a model for the holistic, performance-based, through-life safety assurance case that focuses applicant and oversight alike on achieving the safety outcomes. This paper describes the application of goal-based, technology-neutral features of performance-based assurance cases extending the philosophy of UL 4600, to the Safety Continuum. This paper specifically addresses component reuse including third-party vehicle modifications and changes to operational concept or eco-system. The performance-based assurance argument offers a way to combine the design approval more seamlessly with the oversight functions by focusing all aspects of the argument and practice together to manage the safety outcomes. The model provides the context to assure mitigated risk are consistent with an operation’s place on the safety continuum, while allowing the applicant to reuse parts of the assurance argument to innovate variants or derivatives. The focus on monitoring performance to constantly verify the safety argument complements compliance checking as a way to assure products are "fit-for-use". The paper explains how continued operational safety becomes a natural part of monitoring the assurance case for growing variety in a product line by accounting for the ecosystem changes. Such a model could be used with the Safety Continuum to promote applicant and operator accountability delivering the expected safety outcomes.
ISSN: 2155-7209
2023-06-22
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
2023-01-05
Hammi, Badis, Idir, Mohamed Yacine, Khatoun, Rida.  2022.  A machine learning based approach for the detection of sybil attacks in C-ITS. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
The intrusion detection systems are vital for the sustainability of Cooperative Intelligent Transportation Systems (C-ITS) and the detection of sybil attacks are particularly challenging. In this work, we propose a novel approach for the detection of sybil attacks in C-ITS environments. We provide an evaluation of our approach using extensive simulations that rely on real traces, showing our detection approach's effectiveness.
2022-12-09
Casimiro, Maria, Romano, Paolo, Garlan, David, Rodrigues, Luís.  2022.  Towards a Framework for Adapting Machine Learning Components. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :131—140.
Machine Learning (ML) models are now commonly used as components in systems. As any other component, ML components can produce erroneous outputs that may penalize system utility. In this context, self-adaptive systems emerge as a natural approach to cope with ML mispredictions, through the execution of adaptation tactics such as model retraining. To synthesize an adaptation strategy, the self-adaptation manager needs to reason about the cost-benefit tradeoffs of the applicable tactics, which is a non-trivial task for tactics such as model retraining, whose benefits are both context- and data-dependent.To address this challenge, this paper proposes a probabilistic modeling framework that supports automated reasoning about the cost/benefit tradeoffs associated with improving ML components of ML-based systems. The key idea of the proposed approach is to decouple the problems of (i) estimating the expected performance improvement after retrain and (ii) estimating the impact of ML improved predictions on overall system utility.We demonstrate the application of the proposed framework by using it to self-adapt a state-of-the-art ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection dataset. We show that by predicting system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic retraining, or reactive retraining.
2022-03-08
Kim, Ji-Hoon, Park, Yeo-Reum, Do, Jaeyoung, Ji, Soo-Young, Kim, Joo-Young.  2021.  Accelerating Large-Scale Nearest Neighbor Search with Computational Storage Device. 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :254—254.
K-nearest neighbor algorithm that searches the K closest samples in a high dimensional feature space is one of the most fundamental tasks in machine learning and image retrieval applications. Computational storage device that combines computing unit and storage module on a single board becomes popular to address the data bandwidth bottleneck of the conventional computing system. In this paper, we propose a nearest neighbor search acceleration platform based on computational storage device, which can process a large-scale image dataset efficiently in terms of speed, energy, and cost. We believe that the proposed acceleration platform is promising to be deployed in cloud datacenters for data-intensive applications.
2022-04-22
Iqbal, Talha, Banna, Hasan Ul, Feliachi, Ali.  2021.  AI-Driven Security Constrained Unit Commitment Using Eigen Decomposition And Linear Shift Factors. 2021 North American Power Symposium (NAPS). :01—06.
Unit Commitment (UC) problem is one of the most fundamental constrained optimization problems in the planning and operation of electric power systems and electricity markets. Solving a large-scale UC problem requires a lot of computational effort which can be improved using data driven approaches. In practice, a UC problem is solved multiple times a day with only minor changes in the input data. Hence, this aspect can be exploited by using the historical data to solve the problem. In this paper, an Artificial Intelligence (AI) based approach is proposed to solve a Security Constrained UC problem. The proposed algorithm was tested through simulations on a 4-bus power system and satisfactory results were obtained. The results were compared with those obtained using IBM CPLEX MIQP solver.