Biblio

Found 1065 results

Filters: Keyword is machine learning  [Clear All Filters]
2023-06-22
Cheng, Xin, Wang, Mei-Qi, Shi, Yu-Bo, Lin, Jun, Wang, Zhong-Feng.  2022.  Magical-Decomposition: Winning Both Adversarial Robustness and Efficiency on Hardware. 2022 International Conference on Machine Learning and Cybernetics (ICMLC). :61–66.
Model compression is one of the most preferred techniques for efficiently deploying deep neural networks (DNNs) on resource- constrained Internet of Things (IoT) platforms. However, the simply compressed model is often vulnerable to adversarial attacks, leading to a conflict between robustness and efficiency, especially for IoT devices exposed to complex real-world scenarios. We, for the first time, address this problem by developing a novel framework dubbed Magical-Decomposition to simultaneously enhance both robustness and efficiency for hardware. By leveraging a hardware-friendly model compression method called singular value decomposition, the defending algorithm can be supported by most of the existing DNN hardware accelerators. To step further, by using a recently developed DNN interpretation tool, the underlying scheme of how the adversarial accuracy can be increased in the compressed model is highlighted clearly. Ablation studies and extensive experiments under various attacks/models/datasets consistently validate the effectiveness and scalability of the proposed framework.
ISSN: 2160-1348
2023-04-14
Gong, Dehao, Liu, Yunqing.  2022.  A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
2023-07-21
Said, Dhaou, Elloumi, Mayssa.  2022.  A New False Data Injection Detection Protocol based Machine Learning for P2P Energy Transaction between CEVs. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). 4:1—5.
Without security, any network system loses its efficiency, reliability, and resilience. With the huge integration of the ICT capabilities, the Electric Vehicle (EV) as a transportation form in cities is becoming more and more affordable and able to reply to citizen and environmental expectations. However, the EV vulnerability to cyber-attacks is increasing which intensifies its negative impact on societies. This paper targets the cybersecurity issues for Connected Electric Vehicles (CEVs) in parking lots where a peer-to-peer(P2P) energy transaction system is launched. A False Data Injection Attack (FDIA) on the electricity price signal is considered and a Machine Learning/SVM classification protocol is used to detect and extract the right values. Simulation results are conducted to prove the effectiveness of this proposed model.
2022-12-20
Singh, Inderjeet, Araki, Toshinori, Kakizaki, Kazuya.  2022.  Powerful Physical Adversarial Examples Against Practical Face Recognition Systems. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). :301–310.
It is well-known that the most existing machine learning (ML)-based safety-critical applications are vulnerable to carefully crafted input instances called adversarial examples (AXs). An adversary can conveniently attack these target systems from digital as well as physical worlds. This paper aims to the generation of robust physical AXs against face recognition systems. We present a novel smoothness loss function and a patch-noise combo attack for realizing powerful physical AXs. The smoothness loss interjects the concept of delayed constraints during the attack generation process, thereby causing better handling of optimization complexity and smoother AXs for the physical domain. The patch-noise combo attack combines patch noise and imperceptibly small noises from different distributions to generate powerful registration-based physical AXs. An extensive experimental analysis found that our smoothness loss results in robust and more transferable digital and physical AXs than the conventional techniques. Notably, our smoothness loss results in a 1.17 and 1.97 times better mean attack success rate (ASR) in physical white-box and black-box attacks, respectively. Our patch-noise combo attack furthers the performance gains and results in 2.39 and 4.74 times higher mean ASR than conventional technique in physical world white-box and black-box attacks, respectively.
ISSN: 2690-621X
2023-09-20
Winahyu, R R Kartika, Somantri, Maman, Nurhayati, Oky Dwi.  2022.  Predicting Creditworthiness of Smartphone Users in Indonesia during the COVID-19 pandemic using Machine Learning. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). :223—227.
In this research work, we attempted to predict the creditworthiness of smartphone users in Indonesia during the COVID-19 pandemic using machine learning. Principal Component Analysis (PCA) and Kmeans algorithms are used for the prediction of creditworthiness with the used a dataset of 1050 respondents consisting of twelve questions to smartphone users in Indonesia during the COVID-19 pandemic. The four different classification algorithms (Logistic Regression, Support Vector Machine, Decision Tree, and Naive Bayes) were tested to classify the creditworthiness of smartphone users in Indonesia. The tests carried out included testing for accuracy, precision, recall, F1-score, and Area Under Curve Receiver Operating Characteristics (AUCROC) assesment. Logistic Regression algorithm shows the perfect performances whereas Naïve Bayes (NB) shows the least. The results of this research also provide new knowledge about the influential and non-influential variables based on the twelve questions conducted to the respondents of smartphone users in Indonesia during the COVID-19 pandemic.
2023-01-05
Umarani, S., Aruna, R., Kavitha, V..  2022.  Predicting Distributed Denial of Service Attacks in Machine Learning Field. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :594—597.
A persistent and serious danger to the Internet is a denial of service attack on a large scale (DDoS) attack using machine learning. Because they originate at the low layers, new Infections that use genuine hypertext transfer protocol requests to overload target resources are more untraceable than application layer-based cyberattacks. Using network flow traces to construct an access matrix, this research presents a method for detecting distributed denial of service attack machine learning assaults. Independent component analysis decreases the number of attributes utilized in detection because it is multidimensional. Independent component analysis can be used to translate features into high dimensions and then locate feature subsets. Furthermore, during the training and testing phase of the updated source support vector machine for classification, their performance it is possible to keep track of the detection rate and false alarms. Modified source support vector machine is popular for pattern classification because it produces good results when compared to other approaches, and it outperforms other methods in testing even when given less information about the dataset. To increase classification rate, modified source support Vector machine is used, which is optimized using BAT and the modified Cuckoo Search method. When compared to standard classifiers, the acquired findings indicate better performance.
2023-02-17
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
2023-07-14
Priya, M Janani, Yamuna, G.  2022.  Privacy preserving Data security model for Cloud Computing Technology. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
New advancements in cloud computing technology enable the usage of cloud platforms for business purposes rapidly increasing every day. Data accumulation related to business transactions, Communications, business model architecture and much other information are stored in the cloud platform and access Dubai the business Associates commonly. Considering the security point of view data stored in the cloud need to be highly secured and accessed through authentication. The proposed system is focused on evaluating a cloud integrity auditing model in which the security and privacy preserving system is being audited, privacy is decided using a machine learning algorithm. The proposed model is developed using a hybrid CatBoost algorithm (HCBA) in which the input data is stored into the cloud platform using Bring your own encryption Key (BYOEK). The security of BYOEK model is evaluated and validated with respect to the given test model in terms of Execution time comparison Vs. Data transactions.
2023-06-30
Gupta, Rishabh, Singh, Ashutosh Kumar.  2022.  Privacy-Preserving Cloud Data Model based on Differential Approach. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–6.
With the variety of cloud services, the cloud service provider delivers the machine learning service, which is used in many applications, including risk assessment, product recommen-dation, and image recognition. The cloud service provider initiates a protocol for the classification service to enable the data owners to request an evaluation of their data. The owners may not entirely rely on the cloud environment as the third parties manage it. However, protecting data privacy while sharing it is a significant challenge. A novel privacy-preserving model is proposed, which is based on differential privacy and machine learning approaches. The proposed model allows the various data owners for storage, sharing, and utilization in the cloud environment. The experiments are conducted on Blood transfusion service center, Phoneme, and Wilt datasets to lay down the proposed model's efficiency in accuracy, precision, recall, and Fl-score terms. The results exhibit that the proposed model specifies high accuracy, precision, recall, and Fl-score up to 97.72%, 98.04%, 97.72%, and 98.80%, respectively.
2023-05-12
Borg, Markus, Bengtsson, Johan, Österling, Harald, Hagelborn, Alexander, Gagner, Isabella, Tomaszewski, Piotr.  2022.  Quality Assurance of Generative Dialog Models in an Evolving Conversational Agent Used for Swedish Language Practice. 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN). :22–32.
Due to the migration megatrend, efficient and effective second-language acquisition is vital. One proposed solution involves AI-enabled conversational agents for person-centered interactive language practice. We present results from ongoing action research targeting quality assurance of proprietary generative dialog models trained for virtual job interviews. The action team elicited a set of 38 requirements for which we designed corresponding automated test cases for 15 of particular interest to the evolving solution. Our results show that six of the test case designs can detect meaningful differences between candidate models. While quality assurance of natural language processing applications is complex, we provide initial steps toward an automated framework for machine learning model selection in the context of an evolving conversational agent. Future work will focus on model selection in an MLOps setting.
2023-03-17
Masum, Mohammad, Hossain Faruk, Md Jobair, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam.  2022.  Ransomware Classification and Detection With Machine Learning Algorithms. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0316–0322.
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
Sendner, Christoph, Iffländer, Lukas, Schindler, Sebastian, Jobst, Michael, Dmitrienko, Alexandra, Kounev, Samuel.  2022.  Ransomware Detection in Databases through Dynamic Analysis of Query Sequences. 2022 IEEE Conference on Communications and Network Security (CNS). :326–334.
Ransomware is an emerging threat that imposed a \$ 5 billion loss in 2017, rose to \$ 20 billion in 2021, and is predicted to hit \$ 256 billion in 2031. While initially targeting PC (client) platforms, ransomware recently leaped over to server-side databases-starting in January 2017 with the MongoDB Apocalypse attack and continuing in 2020 with 85,000 MySQL instances ransomed. Previous research developed countermeasures against client-side ransomware. However, the problem of server-side database ransomware has received little attention so far. In our work, we aim to bridge this gap and present DIMAQS (Dynamic Identification of Malicious Query Sequences), a novel anti-ransomware solution for databases. DIMAQS performs runtime monitoring of incoming queries and pattern matching using two classification approaches (Colored Petri Nets (CPNs) and Deep Neural Networks (DNNs)) for attack detection. Our system design exhibits several novel techniques like dynamic color generation to efficiently detect malicious query sequences globally (i.e., without limiting detection to distinct user connections). Our proof-of-concept and ready-to-use implementation targets MySQL servers. The evaluation shows high efficiency without false negatives for both approaches and a false positive rate of nearly 0%. Both classifiers show very moderate performance overheads below 6%. We will publish our data sets and implementation, allowing the community to reproduce our tests and results.
2023-01-05
Ma, Shiming.  2022.  Research and Design of Network Information Security Attack and Defense Practical Training Platform based on ThinkPHP Framework. 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :27—31.
To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
2023-06-22
Tehaam, Muhammad, Ahmad, Salman, Shahid, Hassan, Saboor, Muhammad Suleman, Aziz, Ayesha, Munir, Kashif.  2022.  A Review of DDoS Attack Detection and Prevention Mechanisms in Clouds. 2022 24th International Multitopic Conference (INMIC). :1–6.
Cloud provides access to shared pool of resources like storage, networking, and processing. Distributed denial of service attacks are dangerous for Cloud services because they mainly target the availability of resources. It is important to detect and prevent a DDoS attack for the continuity of Cloud services. In this review, we analyze the different mechanisms of detection and prevention of the DDoS attacks in Clouds. We identify the major DDoS attacks in Clouds and compare the frequently-used strategies to detect, prevent, and mitigate those attacks that will help the future researchers in this area.
ISSN: 2049-3630
2023-03-31
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.  2022.  SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
2023-02-17
Yerima, Suleiman Y., Bashar, Abul.  2022.  Semi-supervised novelty detection with one class SVM for SMS spam detection. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
The volume of SMS messages sent on a daily basis globally has continued to grow significantly over the past years. Hence, mobile phones are becoming increasingly vulnerable to SMS spam messages, thereby exposing users to the risk of fraud and theft of personal data. Filtering of messages to detect and eliminate SMS spam is now a critical functionality for which different types of machine learning approaches are still being explored. In this paper, we propose a system for detecting SMS spam using a semi-supervised novelty detection approach based on one class SVM classifier. The system is built as an anomaly detector that learns only from normal SMS messages thus enabling detection models to be implemented in the absence of labelled SMS spam training examples. We evaluated our proposed system using a benchmark dataset consisting of 747 SMS spam and 4827 non-spam messages. The results show that our proposed method out-performed the traditional supervised machine learning approaches based on binary, frequency or TF-IDF bag-of-words. The overall accuracy was 98% with 100% SMS spam detection rate and only around 3% false positive rate.
ISSN: 2157-8702
2023-08-18
Lo, Pei-Yu, Chen, Chi-Wei, Hsu, Wei-Ting, Chen, Chih-Wei, Tien, Chin-Wei, Kuo, Sy-Yen.  2022.  Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
2023-09-20
Rawat, Amarjeet, Maheshwari, Himani, Khanduja, Manisha, Kumar, Rajiv, Memoria, Minakshi, Kumar, Sanjeev.  2022.  Sentiment Analysis of Covid19 Vaccines Tweets Using NLP and Machine Learning Classifiers. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:225—230.
Sentiment Analysis (SA) is an approach for detecting subjective information such as thoughts, outlooks, reactions, and emotional state. The majority of previous SA work treats it as a text-classification problem that requires labelled input to train the model. However, obtaining a tagged dataset is difficult. We will have to do it by hand the majority of the time. Another concern is that the absence of sufficient cross-domain portability creates challenging situation to reuse same-labelled data across applications. As a result, we will have to manually classify data for each domain. This research work applies sentiment analysis to evaluate the entire vaccine twitter dataset. The work involves the lexicon analysis using NLP libraries like neattext, textblob and multi class classification using BERT. This word evaluates and compares the results of the machine learning algorithms.
2023-04-28
Shakhov, Vladimir.  2022.  Sequential Statistical Analysis-Based Method for Attacks Detection in Cognitive Radio Networks. 2022 27th Asia Pacific Conference on Communications (APCC). :663–666.
This Cognitive radio networks are vulnerable to specific intrusions due to the unique cognitive characteristics of these networks. This DoS attacks are known as the Primary User Emulation Attack and the Spectrum Sensing Data Falsification. If the intruder behavior is not statistically identical to the behavior of the primary users, intrusion detection techniques based on observing the energy of the received signals can be used. Both machine learning-based intrusion detection and sequential statistical analysis can be effectively applied. However, in some cases, statistical sequential analysis has some advantages in dealing with such challenges. This paper discusses aspects of using statistical sequential analysis methods to detect attacks in Cognitive radio networks.
2022-12-09
Lin, Yuhang, Tunde-Onadele, Olufogorehan, Gu, Xiaohui, He, Jingzhu, Latapie, Hugo.  2022.  SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in Containerized Applications. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :41—50.
Container security has received much research attention recently. Previous work has proposed to apply various machine learning techniques to detect security attacks in containerized applications. On one hand, supervised machine learning schemes require sufficient labelled training data to achieve good attack detection accuracy. On the other hand, unsupervised machine learning methods are more practical by avoiding training data labelling requirements, but they often suffer from high false alarm rates. In this paper, we present SHIL, a self-supervised hybrid learning solution, which combines unsupervised and supervised learning methods to achieve high accuracy without requiring any manual data labelling. We have implemented a prototype of SHIL and conducted experiments over 41 real world security attacks in 28 commonly used server applications. Our experimental results show that SHIL can reduce false alarms by 39-91% compared to existing supervised or unsupervised machine learning schemes while achieving a higher or similar detection rate.
2023-02-17
Ubale, Ganesh, Gaikwad, Siddharth.  2022.  SMS Spam Detection Using TFIDF and Voting Classifier. 2022 International Mobile and Embedded Technology Conference (MECON). :363–366.
In today’s digital world, Mobile SMS (short message service) communication has almost become a part of every human life. Meanwhile each mobile user suffers from the harass of Spam SMS. These Spam SMS constitute veritable nuisance to mobile subscribers. Though hackers or spammers try to intrude in mobile computing devices, SMS support for mobile devices become more vulnerable as attacker tries to intrude into the system by sending unsolicited messages. An attacker can gain remote access over mobile devices. We propose a novel approach that can analyze message content and find features using the TF-IDF techniques to efficiently detect Spam Messages and Ham messages using different Machine Learning Classifiers. The Classifiers going to use in proposed work can be measured with the help of metrics such as Accuracy, Precision and Recall. In our proposed approach accuracy rate will be increased by using the Voting Classifier.
Svadasu, Grandhi, Adimoolam, M..  2022.  Spam Detection in Social Media using Artificial Neural Network Algorithm and comparing Accuracy with Support Vector Machine Algorithm. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1–5.
Aim: To bring off the spam detection in social media using Support Vector Machine (SVM) algorithm and compare accuracy with Artificial Neural Network (ANN) algorithm sample size of dataset is 5489, Initially the dataset contains several messages which includes spam and ham messages 80% messages are taken as training and 20% of messages are taken as testing. Materials and Methods: Classification was performed by KNN algorithm (N=10) for spam detection in social media and the accuracy was compared with SVM algorithm (N=10) with G power 80% and alpha value 0.05. Results: The value obtained in terms of accuracy was identified by ANN algorithm (98.2%) and for SVM algorithm (96.2%) with significant value 0.749. Conclusion: The accuracy of detecting spam using the ANN algorithm appears to be slightly better than the SVM algorithm.
2023-01-13
Kappelhoff, Fynn, Rasche, Rasmus, Mukhopadhyay, Debdeep, Rührmair, Ulrich.  2022.  Strong PUF Security Metrics: Response Sensitivity to Small Challenge Perturbations. 2022 23rd International Symposium on Quality Electronic Design (ISQED). :1—10.
This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.This first manuscript within the abovementioned sequence treats one of the conceptually most straightforward security metrics on that path: It investigates the effects that small perturbations in the PUF-challenges have on the resulting PUF-responses. We first develop and implement several sub-metrics that realize this approach in practice. We then empirically show that these metrics have surprising predictive power, and compare our obtained test scores with the known real-world security of several popular Strong PUF designs. The latter include (XOR) Arbiter PUFs, Feed-Forward Arbiter PUFs, and (XOR) Bistable Ring PUFs. Along the way, our manuscript also suggests techniques for representing the results of our metrics graphically, and for interpreting them in a meaningful manner.
2023-08-11
Tsuruta, Takuya, Araki, Shunsuke, Miyazaki, Takeru, Uehara, Satoshi, Kakizaki, Ken'ichi.  2022.  A Study on a DDH-Based Keyed Homomorphic Encryption Suitable to Machine Learning in the Cloud. 2022 IEEE International Conference on Consumer Electronics – Taiwan. :167—168.
Homomorphic encryption is suitable for a machine learning in the cloud such as a privacy-preserving machine learning. However, ordinary homomorphic public key encryption has a problem that public key holders can generate ciphertexts and anyone can execute homomorphic operations. In this paper, we will propose a solution based on the Keyed Homomorphic-Public Key Encryption proposed by Emura et al.
2023-06-22
Chen, Jing, Yang, Lei, Qiu, Ziqiao.  2022.  Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.