Biblio

Found 1065 results

Filters: Keyword is machine learning  [Clear All Filters]
2022-02-07
Han, Sung-Hwa.  2021.  Analysis of Data Transforming Technology for Malware Detection. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). :224–229.
As AI technology advances and its use increases, efforts to incorporate machine learning for malware detection are increasing. However, for malware learning, a standardized data set is required. Because malware is unstructured data, it cannot be directly learned. In order to solve this problem, many studies have attempted to convert unstructured data into structured data. In this study, the features and limitations of each were analyzed by investigating and analyzing the method of converting unstructured data proposed in each study into structured data. As a result, most of the data conversion techniques suggest conversion mechanisms, but the scope of each technique has not been determined. The resulting data set is not suitable for use as training data because it has infinite properties.
2021-12-20
Baye, Gaspard, Hussain, Fatima, Oracevic, Alma, Hussain, Rasheed, Ahsan Kazmi, S.M..  2021.  API Security in Large Enterprises: Leveraging Machine Learning for Anomaly Detection. 2021 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Large enterprises offer thousands of micro-services applications to support their daily business activities by using Application Programming Interfaces (APIs). These applications generate huge amounts of traffic via millions of API calls every day, which is difficult to analyze for detecting any potential abnormal behaviour and application outage. This phenomenon makes Machine Learning (ML) a natural choice to leverage and analyze the API traffic and obtain intelligent predictions. This paper proposes an ML-based technique to detect and classify API traffic based on specific features like bandwidth and number of requests per token. We employ a Support Vector Machine (SVM) as a binary classifier to classify the abnormal API traffic using its linear kernel. Due to the scarcity of the API dataset, we created a synthetic dataset inspired by the real-world API dataset. Then we used the Gaussian distribution outlier detection technique to create a training labeled dataset simulating real-world API logs data which we used to train the SVM classifier. Furthermore, to find a trade-off between accuracy and false positives, we aim at finding the optimal value of the error term (C) of the classifier. The proposed anomaly detection method can be used in a plug and play manner, and fits into the existing micro-service architecture with little adjustments in order to provide accurate results in a fast and reliable way. Our results demonstrate that the proposed method achieves an F1-score of 0.964 in detecting anomalies in API traffic with a 7.3% of false positives rate.
2022-07-14
Almousa, May, Basavaraju, Sai, Anwar, Mohd.  2021.  API-Based Ransomware Detection Using Machine Learning-Based Threat Detection Models. 2021 18th International Conference on Privacy, Security and Trust (PST). :1–7.
Ransomware is a major malware attack experienced by large corporations and healthcare services. Ransomware employs the idea of cryptovirology, which uses cryptography to design malware. The goal of ransomware is to extort ransom by threatening the victim with the destruction of their data. Ransomware typically involves a 3-step process: analyzing the victim’s network traffic, identifying a vulnerability, and then exploiting it. Thus, the detection of ransomware has become an important undertaking that involves various sophisticated solutions for improving security. To further enhance ransomware detection capabilities, this paper focuses on an Application Programming Interface (API)-based ransomware detection approach in combination with machine learning (ML) techniques. The focus of this research is (i) understanding the life cycle of ransomware on the Windows platform, (ii) dynamic analysis of ransomware samples to extract various features of malicious code patterns, and (iii) developing and validating machine learning-based ransomware detection models on different ransomware and benign samples. Data were collected from publicly available repositories and subjected to sandbox analysis for sampling. The sampled datasets were applied to build machine learning models. The grid search hyperparameter optimization algorithm was employed to obtain the best fit model; the results were cross-validated with the testing datasets. This analysis yielded a high ransomware detection accuracy of 99.18% for Windows-based platforms and shows the potential for achieving high-accuracy ransomware detection capabilities when using a combination of API calls and an ML model. This approach can be further utilized with existing multilayer security solutions to protect critical data from ransomware attacks.
2022-08-03
Laputenko, Andrey.  2021.  Assessing Trustworthiness of IoT Applications Using Logic Circuits. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
The paper describes a methodology for assessing non-functional requirements, such as trust characteristics for applications running on computationally constrained devices in the Internet of Things. The methodology is demonstrated through an example of a microcontroller-based temperature monitoring system. The concepts of trust and trustworthiness for software and devices of the Internet of Things are complex characteristics for describing the correct and secure operation of such systems and include aspects of operational and information security, reliability, resilience and privacy. Machine learning models, which are increasingly often used for such tasks in recent years, are resource-consuming software implementations. The paper proposes to use a logic circuit model to implement the above algorithms as an additional module for computationally constrained devices for checking the trustworthiness of applications running on them. Such a module could be implemented as a hardware, for example, as an FPGA in order to achieve more effectiveness.
2022-03-08
Wang, Xinyi, Yang, Bo, Liu, Qi, Jin, Tiankai, Chen, Cailian.  2021.  Collaboratively Diagnosing IGBT Open-circuit Faults in Photovoltaic Inverters: A Decentralized Federated Learning-based Method. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
In photovoltaic (PV) systems, machine learning-based methods have been used for fault detection and diagnosis in the past years, which require large amounts of data. However, fault types in a single PV station are usually insufficient in practice. Due to insufficient and non-identically distributed data, packet loss and privacy concerns, it is difficult to train a model for diagnosing all fault types. To address these issues, in this paper, we propose a decentralized federated learning (FL)-based fault diagnosis method for insulated gate bipolar transistor (IGBT) open-circuits in PV inverters. All PV stations use the convolutional neural network (CNN) to train local diagnosis models. By aggregating neighboring model parameters, each PV station benefits from the fault diagnosis knowledge learned from neighbors and achieves diagnosing all fault types without sharing original data. Extensive experiments are conducted in terms of non-identical data distributions, various transmission channel conditions and whether to use the FL framework. The results are as follows: 1) Using data with non-identical distributions, the collaboratively trained model diagnoses faults accurately and robustly; 2) The continuous transmission and aggregation of model parameters in multiple rounds make it possible to obtain ideal training results even in the presence of packet loss; 3) The proposed method allows each PV station to diagnose all fault types without original data sharing, which protects data privacy.
2022-02-22
Lanus, Erin, Freeman, Laura J., Richard Kuhn, D., Kacker, Raghu N..  2021.  Combinatorial Testing Metrics for Machine Learning. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :81–84.
This paper defines a set difference metric for comparing machine learning (ML) datasets and proposes the difference between datasets be a function of combinatorial coverage. We illustrate its utility for evaluating and predicting performance of ML models. Identifying and measuring differences between datasets is of significant value for ML problems, where the accuracy of the model is heavily dependent on the degree to which training data are sufficiently representative of data encountered in application. The method is illustrated for transfer learning without retraining, the problem of predicting performance of a model trained on one dataset and applied to another.
2022-09-09
Raafat, Maryam A., El-Wakil, Rania Abdel-Fattah, Atia, Ayman.  2021.  Comparative study for Stylometric analysis techniques for authorship attribution. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :176—181.
A text is a meaningful source of information. Capturing the right patterns in written text gives metrics to measure and infer to what extent this text belongs or is relevant to a specific author. This research aims to introduce a new feature that goes more in deep in the language structure. The feature introduced is based on an attempt to differentiate stylistic changes among authors according to the different sentence structure each author uses. The study showed the effect of introducing this new feature to machine learning models to enhance their performance. It was found that the prediction of authors was enhanced by adding sentence structure as an additional feature as the f1\_scores increased by 0.3% and when normalizing the data and adding the feature it increased by 5%.
2022-03-01
Sapre, Suchet, Islam, Khondkar, Ahmadi, Pouyan.  2021.  A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
2022-01-10
Kalinin, Maxim O., Krundyshev, Vasiliy M..  2021.  Computational Intelligence Technologies Stack for Protecting the Critical Digital Infrastructures against Security Intrusions. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :118–122.
Over the past decade, an infotelecommunication technology has made significant strides forward. With the advent of new generation wireless networks and the massive digitalization of industries, the object of protection has changed. The digital transformation has led to an increased opportunity for cybercriminals. The ability of computational intelligence to quickly process large amounts of data makes the intrusions tailored to specific environments. Polymorphic attacks that have mutations in their sequences of acts adapt to the communication environments, operating systems and service frameworks, and also try to deceive the defense tools. The poor protection of most Internet of Things devices allows the attackers to take control over them creating the megabotnets. In this regard, traditional methods of network protection become rigid and low-effective. The paper reviews a computational intelligence (CI) enabled software- defined network (SDN) for the network management, providing dynamic network reconfiguration to improve network performance and security control. Advanced machine learning and artificial neural networks are promising in detection of false data injections. Bioinformatics methods make it possible to detect polymorphic attacks. Swarm intelligence detects dynamic routing anomalies. Quantum machine learning is effective at processing the large volumes of security-relevant datasets. The CI technology stack provides a comprehensive protection against a variative cyberthreats scope.
2022-02-07
Chkirbene, Zina, Hamila, Ridha, Erbad, Aiman, Kiranyaz, Serkan, Al-Emadi, Nasser, Hamdi, Mounir.  2021.  Cooperative Machine Learning Techniques for Cloud Intrusion Detection. 2021 International Wireless Communications and Mobile Computing (IWCMC). :837–842.
Cloud computing is attracting a lot of attention in the past few years. Although, even with its wide acceptance, cloud security is still one of the most essential concerns of cloud computing. Many systems have been proposed to protect the cloud from attacks using attack signatures. Most of them may seem effective and efficient; however, there are many drawbacks such as the attack detection performance and the system maintenance. Recently, learning-based methods for security applications have been proposed for cloud anomaly detection especially with the advents of machine learning techniques. However, most researchers do not consider the attack classification which is an important parameter for proposing an appropriate countermeasure for each attack type. In this paper, we propose a new firewall model called Secure Packet Classifier (SPC) for cloud anomalies detection and classification. The proposed model is constructed based on collaborative filtering using two machine learning algorithms to gain the advantages of both learning schemes. This strategy increases the learning performance and the system's accuracy. To generate our results, a publicly available dataset is used for training and testing the performance of the proposed SPC. Our results show that the accuracy of the SPC model increases the detection accuracy by 20% compared to the existing machine learning algorithms while keeping a high attack detection rate.
2022-04-12
Mahor, Vinod, Rawat, Romil, Kumar, Anil, Chouhan, Mukesh, Shaw, Rabindra Nath, Ghosh, Ankush.  2021.  Cyber Warfare Threat Categorization on CPS by Dark Web Terrorist. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). :1—6.
The Industrial Internet of Things (IIoT) also referred as Cyber Physical Systems (CPS) as critical elements, expected to play a key role in Industry 4.0 and always been vulnerable to cyber-attacks and vulnerabilities. Terrorists use cyber vulnerability as weapons for mass destruction. The dark web's strong transparency and hard-to-track systems offer a safe haven for criminal activity. On the dark web (DW), there is a wide variety of illicit material that is posted regularly. For supervised training, large-scale web pages are used in traditional DW categorization. However, new study is being hampered by the impossibility of gathering sufficiently illicit DW material and the time spent manually tagging web pages. We suggest a system for accurately classifying criminal activity on the DW in this article. Rather than depending on the vast DW training package, we used authorized regulatory to various types of illicit activity for training Machine Learning (ML) classifiers and get appreciable categorization results. Espionage, Sabotage, Electrical power grid, Propaganda and Economic disruption are the cyber warfare motivations and We choose appropriate data from the open source links for supervised Learning and run a categorization experiment on the illicit material obtained from the actual DW. The results shows that in the experimental setting, using TF-IDF function extraction and a AdaBoost classifier, we were able to achieve an accuracy of 0.942. Our method enables the researchers and System authoritarian agency to verify if their DW corpus includes such illicit activity depending on the applicable rules of the illicit categories they are interested in, allowing them to identify and track possible illicit websites in real time. Because broad training set and expert-supplied seed keywords are not required, this categorization approach offers another option for defining illicit activities on the DW.
2022-02-24
Ali, Wan Noor Hamiza Wan, Mohd, Masnizah, Fauzi, Fariza.  2021.  Cyberbullying Predictive Model: Implementation of Machine Learning Approach. 2021 Fifth International Conference on Information Retrieval and Knowledge Management (CAMP). :65–69.
Machine learning is implemented extensively in various applications. The machine learning algorithms teach computers to do what comes naturally to humans. The objective of this study is to do comparison on the predictive models in cyberbullying detection between the basic machine learning system and the proposed system with the involvement of feature selection technique, resampling and hyperparameter optimization by using two classifiers; Support Vector Classification Linear and Decision Tree. Corpus from ASKfm used to extract word n-grams features before implemented into eight different experiments setup. Evaluation on performance metric shows that Decision Tree gives the best performance when tested using feature selection without resampling and hyperparameter optimization involvement. This shows that the proposed system is better than the basic setting in machine learning.
2022-02-25
Wilms, Daniel, Stoecker, Carsten, Caballero, Juan.  2021.  Data Provenance in Vehicle Data Chains. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). :1–5.
With almost every new vehicle being connected, the importance of vehicle data is growing rapidly. Many mobility applications rely on the fusion of data coming from heterogeneous data sources, like vehicle and "smart-city" data or process data generated by systems out of their control. This external data determines much about the behaviour of the relying applications: it impacts the reliability, security and overall quality of the application's input data and ultimately of the application itself. Hence, knowledge about the provenance of that data is a critical component in any data-driven system. The secure traceability of the data handling along the entire processing chain, which passes through various distinct systems, is critical for the detection and avoidance of misuse and manipulation. In this paper, we introduce a mechanism for establishing secure data provenance in real time, demonstrating an exemplary use-case based on a machine learning model that detects dangerous driving situations. We show with our approach based on W3C decentralized identity standards that data provenance in closed data systems can be effectively achieved using technical standards designed for an open data approach.
2022-04-13
Kousar, Heena, Mulla, Mohammed Moin, Shettar, Pooja, D. G., Narayan.  2021.  DDoS Attack Detection System using Apache Spark. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
Distributed Denial of Service Attacks (DDoS) are most widely used cyber-attacks. Thus, design of DDoS detection mechanisms has attracted attention of researchers. Design of these mechanisms involves building statistical and machine learning models. Most of the work in design of mechanisms is focussed on improving the accuracy of the model. However, due to large volume of network traffic, scalability and performance of these techniques is an important research issue. In this work, we use Apache Spark framework for detection of DDoS attacks. We use NSL-KDD Cup as a benchmark dataset for experimental analysis. The results reveal that random forest performs better than decision trees and distributed processing improves the performance in terms of pre-processing and training time.
Dalvi, Jai, Sharma, Vyomesh, Shetty, Ruchika, Kulkarni, Sujata.  2021.  DDoS Attack Detection using Artificial Neural Network. 2021 International Conference on Industrial Electronics Research and Applications (ICIERA). :1—5.
Distributed denial of service (DDoS) attacks is one of the most evolving threats in the current Internet situation and yet there is no effective mechanism to curb it. In the field of DDoS attacks, as in all other areas of cybersecurity, attackers are increasingly using sophisticated methods. The work in this paper focuses on using Artificial Neural Network to detect various types of DDOS attacks(UDP-Flood, Smurf, HTTP-Flood and SiDDoS). We would be mainly focusing on the network and transport layer DDoS attacks. Additionally, the time and space complexity is also calculated to further improve the efficiency of the model implemented and overcome the limitations found in the research gap. The results obtained from our analysis on the dataset show that our proposed methods can better detect the DDoS attack.
Bozorov, Suhrobjon.  2021.  DDoS Attack Detection via IDS: Open Challenges and Problems. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This paper discusses DDoS attacks, their current threat level and IDS systems, which are one of the main tools to protect against them. It focuses on the problems encountered by IDS systems in detecting DDoS attacks and the difficulties and challenges of integrating them with artificial intelligence systems today.
2022-09-20
Abuah, Chike, Silence, Alex, Darais, David, Near, Joseph P..  2021.  DDUO: General-Purpose Dynamic Analysis for Differential Privacy. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1—15.
Differential privacy enables general statistical analysis of data with formal guarantees of privacy protection at the individual level. Tools that assist data analysts with utilizing differential privacy have frequently taken the form of programming languages and libraries. However, many existing programming languages designed for compositional verification of differential privacy impose significant burden on the programmer (in the form of complex type annotations). Supplementary library support for privacy analysis built on top of existing general-purpose languages has been more usable, but incapable of pervasive end-to-end enforcement of sensitivity analysis and privacy composition. We introduce DDuo, a dynamic analysis for enforcing differential privacy. DDuo is usable by non-experts: its analysis is automatic and it requires no additional type annotations. DDuo can be implemented as a library for existing programming languages; we present a reference implementation in Python which features moderate runtime overheads on realistic workloads. We include support for several data types, distance metrics and operations which are commonly used in modern machine learning programs. We also provide initial support for tracking the sensitivity of data transformations in popular Python libraries for data analysis. We formalize the novel core of the DDuo system and prove it sound for sensitivity analysis via a logical relation for metric preservation. We also illustrate DDuo's usability and flexibility through various case studies which implement state-of-the-art machine learning algorithms.
2022-07-01
Hashim, Aya, Medani, Razan, Attia, Tahani Abdalla.  2021.  Defences Against web Application Attacks and Detecting Phishing Links Using Machine Learning. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). :1–6.
In recent years web applications that are hacked every day estimated to be 30 000, and in most cases, web developers or website owners do not even have enough knowledge about what is happening on their sites. Web hackers can use many attacks to gain entry or compromise legitimate web applications, they can also deceive people by using phishing sites to collect their sensitive and private information. In response to this, the need is raised to take proper measures to understand the risks and be aware of the vulnerabilities that may affect the website and hence the normal business flow. In the scope of this study, mitigations against the most common web application attacks are set, and the web administrator is provided with ways to detect phishing links which is a social engineering attack, the study also demonstrates the generation of web application logs that simplifies the process of analyzing the actions of abnormal users to show when behavior is out of bounds, out of scope, or against the rules. The methods of mitigation are accomplished by secure coding techniques and the methods for phishing link detection are performed by various machine learning algorithms and deep learning techniques. The developed application has been tested and evaluated against various attack scenarios, the outcomes obtained from the test process showed that the website had successfully mitigated these dangerous web application attacks, and for the detection of phishing links part, a comparison is made between different algorithms to find the best one, and the outcome of the best model gave 98% accuracy.
2022-05-10
Ahmed, Foez, Shahriar, T. A. M. Ragib, Paul, Robi, Ahammad, Arif.  2021.  Design and Development of a Smart Surveillance System for Security of an Institution. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT). :1–4.
Conventional Security Systems are improving with the advancement of Internet of Things (IoT) based technology. For better security, in addition to the currently available technology, surveillance systems are used. In this research, a Smart Surveillance System with machine-learning capabilities is designed to detect security breaches and it will resolve safety concerns. Machine learning algorithms are implemented to detect intruders as well as suspicious activities. Enery efficiency is the major concern for constant monitoring systems. As a result, the designed system focuses on power consumption by calibrating the system so that it can work on bare minimum power and additionally provides the required output. Fire sensor has also been integrated to detect fire for safety purposes. By adding upon the security infrastructure, next-generation smart surveillance systems can be created for a safe future. The developed system contains the necessary tools to recognize intruders by face recognition. Also using the ambient sensors (PIR sensor, fire detecting sensor), a secure environment is provided during working and non-working hours. The system shows high accuracy in human & flame detection. A more reliable security system can be created with the further development of this research.
2022-02-09
Xu, Xiaojun, Wang, Qi, Li, Huichen, Borisov, Nikita, Gunter, Carl A., Li, Bo.  2021.  Detecting AI Trojans Using Meta Neural Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :103–120.
In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.
2022-04-01
Chasaki, Danai, Mansour, Christopher.  2021.  Detecting Malicious Hosts in SDN through System Call Learning. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Software Defined Networking (SDN) has changed the way of designing and managing networks through programmability. However, programmability also introduces security threats. In this work we address the issue of malicious hosts running malicious applications that bypass the standard SDN based detection mechanisms. The SDN security system we are proposing periodically monitors the system calls utilization of the different SDN applications installed, learns from past system behavior using machine learning classifiers, and thus accurately detects the existence of an unusual activity or a malicious application.
2022-04-19
Chen, Hsing-Chung, Nshimiyimana, Aristophane, Damarjati, Cahya, Chang, Pi-Hsien.  2021.  Detection and Prevention of Cross-site Scripting Attack with Combined Approaches. 2021 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
Cross-site scripting (XSS) attack is a kind of code injection that allows an attacker to inject malicious scripts code into a trusted web application. When a user tries to request the injected web page, he is not aware that the malicious script code might be affecting his computer. Nowadays, attackers are targeting the web applications that holding a sensitive data (e.g., bank transaction, e-mails, healthcare, and e-banking) to steal users' information and gain full access to the data which make the web applications to be more vulnerable. In this research, we applied three approaches to find a solution to this most challenging attacks issues. In the first approach, we implemented Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (k-NN), and Support Vector Machine (SVM) algorithms to discover and classify XSS attack. In the second approach, we implemented the Content Security Policy (CSP) approach to detect XSS attacks in real-time. In the last approach, we propose a new approach that combines the Web Application Firewall (WAF), Intrusion Detection System (IDS), and Intrusion Prevention System (IPS) to detect and prevent XSS attack in real-time. Our experiment results demonstrated the high performance of AI algorithms. The CSP approach shows the results for the detection system report in real-time. In the third approach, we got more expected system results that make our third model system a more powerful tool to address this research problem than the other two approaches.
2022-08-12
Hakim, Mohammad Sadegh Seyyed, Karegar, Hossein Kazemi.  2021.  Detection of False Data Injection Attacks Using Cross Wavelet Transform and Machine Learning. 2021 11th Smart Grid Conference (SGC). :1—5.
Power grids are the most extensive man-made systems that are difficult to control and monitor. With the development of conventional power grids and moving toward smart grids, power systems have undergone vast changes since they use the Internet to transmit information and control commands to different parts of the power system. Due to the use of the Internet as a basic infrastructure for smart grids, attackers can sabotage the communication networks and alter the measurements. Due to the complexity of the smart grids, it is difficult for the network operator to detect such cyber-attacks. The attackers can implement the attack in a manner that conventional Bad Data detection (BDD) systems cannot detect since it may not violate the physical laws of the power system. This paper uses the cross wavelet transform (XWT) to detect stealth false data injections attacks (FDIAs) against state estimation (SE) systems. XWT can capture the coherency between measurements of adjacent buses and represent it in time and frequency space. Then, we train a machine learning classification algorithm to distinguish attacked measurements from normal measurements by applying a feature extraction technique.
2022-09-20
Wood, Adrian, Johnstone, Michael N..  2021.  Detection of Induced False Negatives in Malware Samples. 2021 18th International Conference on Privacy, Security and Trust (PST). :1—6.
Malware detection is an important area of cyber security. Computer systems rely on malware detection applications to prevent malware attacks from succeeding. Malware detection is not a straightforward task, as new variants of malware are generated at an increasing rate. Machine learning (ML) has been utilised to generate predictive classification models to identify new malware variants which conventional malware detection methods may not detect. Machine learning, has however, been found to be vulnerable to different types of adversarial attacks, in which an attacker is able to negatively affect the classification ability of the ML model. Several defensive measures to prevent adversarial poisoning attacks have been developed, but they often rely on the use of a trusted clean dataset to help identify and remove adversarial examples from the training dataset. The defence in this paper does not require a trusted clean dataset, but instead, identifies intentional false negatives (zero day malware classified as benign) at the testing stage by examining the activation weights of the ML model. The defence was able to identify 94.07% of the successful targeted poisoning attacks.
2022-01-10
Ugwu, Chukwuemeka Christian, Obe, Olumide Olayinka, Popoọla, Olugbemiga Solomon, Adetunmbi, Adebayo Olusọla.  2021.  A Distributed Denial of Service Attack Detection System using Long Short Term Memory with Singular Value Decomposition. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :112–118.
The increase in online activity during the COVID 19 pandemic has generated a surge in network traffic capable of expanding the scope of DDoS attacks. Cyber criminals can now afford to launch massive DDoS attacks capable of degrading the performances of conventional machine learning based IDS models. Hence, there is an urgent need for an effective DDoS attack detective model with the capacity to handle large magnitude of DDoS attack traffic. This study proposes a deep learning based DDoS attack detection system using Long Short Term Memory (LSTM). The proposed model was evaluated on UNSW-NB15 and NSL-KDD intrusion datasets, whereby twenty-three (23) and twenty (20) attack features were extracted from UNSW-NB15 and NSL-KDD, respectively using Singular Value Decomposition (SVD). The results from the proposed model show significant improvement when compared with results from some conventional machine learning techniques such as Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) with accuracies of 94.28% and 90.59% on both datasets, respectively. Furthermore, comparative analysis of LSTM with other deep learning results reported in literature justified the choice of LSTM among its deep learning peers in detecting DDoS attacks over a network.