Biblio
Filters: Keyword is machine learning [Clear All Filters]
Rapid Ransomware Detection through Side Channel Exploitation. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :47–54.
.
2021. A new method for the detection of ransomware in an infected host is described and evaluated. The method utilizes data streams from on-board sensors to fingerprint the initiation of a ransomware infection. These sensor streams, which are common in modern computing systems, are used as a side channel for understanding the state of the system. It is shown that ransomware detection can be achieved in a rapid manner and that the use of slight, yet distinguishable changes in the physical state of a system as derived from a machine learning predictive model is an effective technique. A feature vector, consisting of various sensor outputs, is coupled with a detection criteria to predict the binary state of ransomware present versus normal operation. An advantage of this approach is that previously unknown or zero-day version s of ransomware are vulnerable to this detection method since no apriori knowledge of the malware characteristics are required. Experiments are carried out with a variety of different system loads and with different encryption methods used during a ransomware attack. Two test systems were utilized with one having a relatively low amount of available sensor data and the other having a relatively high amount of available sensor data. The average time for attack detection in the "sensor-rich" system was 7.79 seconds with an average Matthews correlation coefficient of 0.8905 for binary system state predictions regardless of encryption method and system load. The model flagged all attacks tested.
Real Time early Multi Stage Attack Detection. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:283–290.
.
2021. In recent times, attackers are continuously developing advanced techniques for evading security, stealing personal financial data, Intellectual Property (IP) and sensitive information. These attacks often employ multiple attack vectors for gaining initial access to the systems. Analysts are often challenged to identify malware objective, initial attack vectors, attack propagation, evading techniques, protective mechanisms and unseen techniques. Most of these attacks are frequently referred to as Multi stage attacks and pose a grave threat to organizations, individuals and the government. Early multistage attack detection is a crucial measure to counter malware and deactivate it. Most traditional security solutions use signature-based detection, which frequently fails to thwart zero-day attacks. Manual analysis of these samples requires enormous effort for effectively counter exponential growth of malware samples. In this paper, we present a novel approach leveraging Machine Learning and MITRE Adversary Tactic Technique and Common knowledge (ATT&CK) framework for early multistage attack detection in real time. Firstly, we have developed a run-time engine that receives notification while malicious executable is downloaded via browser or a launch of a new process in the system. Upon notification, the engine extracts the features from static executable for learning if the executable is malicious. Secondly, we use the MITRE ATT&CK framework, evolved based on the real-world observations of the cyber attacks, that best describes the multistage attack with respect to the adversary Tactics, Techniques and Procedure (TTP) for detecting the malicious executable as well as predict the stages that the malware executes during the attack. Lastly, we propose a real-time system that combines both these techniques for early multistage attack detection. The proposed model has been tested on 6000 unpacked malware samples and it achieves 98 % accuracy. The other major contribution in this paper is identifying the Windows API calls for each of the adversary techniques based on the MITRE ATT&CK.
Research on Network Big Data Security Integration Algorithm Based on Machine Learning. 2021 International Conference of Social Computing and Digital Economy (ICSCDE). :264–267.
.
2021. In order to improve the big data management ability of IOT access control based on converged network structure, a security integration model of IOT access control based on machine learning and converged network structure is proposed. Combined with the feature analysis method, the storage structure allocation model is established, the feature extraction and fuzzy clustering analysis of big data are realized by using the spatial node rotation control, the fuzzy information fusion parameter analysis model is constructed, the frequency coupling parameter analysis is realized, the virtual inertia parameter analysis model is established, and the integrated processing of big data is realized according to the machine learning analysis results. The test results show that the method has good clustering effect, reduces the storage overhead, and improves the reliability management ability of big data.
Resiliency of SNN on Black-Box Adversarial Attacks. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). :799–806.
.
2021. Existing works indicate that Spiking Neural Networks (SNNs) are resilient to adversarial attacks by testing against few attack models. This paper studies adversarial attacks on SNNs using additional attack models and shows that SNNs are not inherently robust against many few-pixel L0 black-box attacks. Additionally, a method to defend against such attacks in SNNs is presented. The SNNs and the effects of adversarial attacks are tested on both software simulators as well as on SpiNNaker neuromorphic hardware.
Resilient and Verifiable Federated Learning against Byzantine Colluding Attacks. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :31–40.
.
2021. Federated Learning (FL) is a multiparty learning computing approach that can aid privacy-preservation machine learning. However, FL has several potential security and privacy threats. First, the existing FL requires a central coordinator for the learning process which brings a single point of failure and trust issues for the shared trained model. Second, during the learning process, intentionally unreliable model updates performed by Byzantine colluding parties can lower the quality and convergence of the shared ML models. Therefore, discovering verifiable local model updates (i.e., integrity or correctness) and trusted parties in FL becomes crucial. In this paper, we propose a resilient and verifiable FL algorithm based on a reputation scheme to cope with unreliable parties. We develop a selection algorithm for task publisher and blockchain-based multiparty learning architecture approach where local model updates are securely exchanged and verified without the central party. We also proposed a novel auditing scheme to ensure our proposed approach is resilient up to 50% Byzantine colluding attack in a malicious scenario.
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS. IEEE Communications Surveys Tutorials. 23:524–552.
.
2021. Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This article is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this article, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
Conference Name: IEEE Communications Surveys Tutorials
A Review on Intrusion Detection System Using Machine Learning Techniques. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :541–549.
.
2021. Computer networks are exposed to cyber related attacks due to the common usage of internet, as the result of such, several intrusion detection systems (IDSs) were proposed by several researchers. Among key research issues in securing network is detecting intrusions. It helps to recognize unauthorized usage and attacks as a measure to ensure the secure the network's security. Various approaches have been proposed to determine the most effective features and hence enhance the efficiency of intrusion detection systems, the methods include, machine learning-based (ML), Bayesian based algorithm, nature inspired meta-heuristic techniques, swarm smart algorithm, and Markov neural network. Over years, the various works being carried out were evaluated on different datasets. This paper presents a thorough review on various research articles that employed single, hybrid and ensemble classification algorithms. The results metrics, shortcomings and datasets used by the studied articles in the development of IDS were compared. A future direction for potential researches is also given.
A Review on Phishing Websites Revealing through Machine Learning. 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART). :330—335.
.
2021. Phishing is a frequent assault in which unsuspecting people’s unique, private, and sensitive information is stolen through fake websites. The primary objective of phishing websites’consistent resource allocators isto steal unique, private, and sensitive information such as user login passwords and online financial transactions. Phishers construct phony websites that look and sound just like genuine things. With the advent of technology, there are protecting users significantly increased in phishing methods. It necessitates the development of an anti-phishing technology to identify phishing and protect users. Machine learning is a useful technique for combating phishing attempts. These articles were utilized to examine Machine learning for detection strategies and characteristics.
Scalable Wi-Fi Intrusion Detection for IoT Systems. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—6.
.
2021. The pervasive and resource-constrained nature of Internet of Things (IoT) devices makes them attractive to be targeted by different means of cyber threats. There are a vast amount of botnets being deployed every day that aim to increase their presence on the Internet for realizing malicious activities with the help of the compromised interconnected devices. Therefore, monitoring IoT networks using intrusion detection systems is one of the major countermeasures against such threats. In this work, we present a machine learning based Wi-Fi intrusion detection system developed specifically for IoT devices. We show that a single multi-class classifier, which operates on the encrypted data collected from the wireless data link layer, is able to detect the benign traffic and six types of IoT attacks with an overall accuracy of 96.85%. Our model is a scalable one since there is no need to train different classifiers for different IoT devices. We also present an alternative attack classifier that outperforms the attack classification model which has been developed in an existing study using the same dataset.
Security and Machine Learning Adoption in IoT: A Preliminary Study of IoT Developer Discussions. 2021 IEEE/ACM 3rd International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :36–43.
.
2021. Internet of Things (IoT) is defined as the connection between places and physical objects (i.e., things) over the internet/network via smart computing devices. IoT is a rapidly emerging paradigm that now encompasses almost every aspect of our modern life. As such, it is crucial to ensure IoT devices follow strict security requirements. At the same time, the prevalence of IoT devices offers developers a chance to design and develop Machine Learning (ML)-based intelligent software systems using their IoT devices. However, given the diversity of IoT devices, IoT developers may find it challenging to introduce appropriate security and ML techniques into their devices. Traditionally, we learn about the IoT ecosystem/problems by conducting surveys of IoT developers/practitioners. Another way to learn is by analyzing IoT developer discussions in popular online developer forums like Stack Overflow (SO). However, we are aware of no such studies that focused on IoT developers’ security and ML-related discussions in SO. This paper offers the results of preliminary study of IoT developer discussions in SO. First, we collect around 53K IoT posts (questions + accepted answers) from SO. Second, we tokenize each post into sentences. Third, we automatically identify sentences containing security and ML-related discussions. We find around 12% of sentences contain security discussions, while around 0.12% sentences contain ML-related discussions. There is no overlap between security and ML-related discussions, i.e., IoT developers discussing security requirements did not discuss ML requirements and vice versa. We find that IoT developers discussing security issues frequently inquired about how the shared data can be stored, shared, and transferred securely across IoT devices and users. We also find that IoT developers are interested to adopt deep neural network-based ML models into their IoT devices, but they find it challenging to accommodate those into their resource-constrained IoT devices. Our findings offer implications for IoT vendors and researchers to develop and design novel techniques for improved security and ML adoption into IoT devices.
Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :254–261.
.
2021. The intelligent cyber-physical system (CPS) has been applied in various fields, covering multiple critical infras-tructures and human daily life support areas. CPS Security is a major concern and of critical importance, especially the security of the intelligent control component. Side-channel analysis (SCA) is the common threat exploiting the weaknesses in system operation to extract information of the intelligent CPS. However, existing literature lacks the systematic theo-retical analysis of the side-channel attacks on the intelligent CPS, without the ability to quantify and measure the leaked information. To address these issues, we propose the SCA-based model extraction attack on intelligent CPS. First, we design an efficient and novel SCA-based model extraction framework, including the threat model, hierarchical attack process, and the multiple micro-space parallel search enabled weight extraction algorithm. Secondly, an information theory-empowered analy-sis model for side-channel attacks on intelligent CPS is built. We propose a mutual information-based quantification method and derive the capacity of side-channel attacks on intelligent CPS, formulating the amount of information leakage through side channels. Thirdly, we develop the theoretical bounds of the leaked information over multiple attack queries based on the data processing inequality and properties of entropy. These convergence bounds provide theoretical means to estimate the amount of information leaked. Finally, experimental evaluation, including real-world experiments, demonstrates the effective-ness of the proposed SCA-based model extraction algorithm and the information theory-based analysis method in intelligent CPS.
SnapCatch: Automatic Detection of Covert Timing Channels Using Image Processing and Machine Learning. IEEE Access. 9:177–191.
.
2021. With the rapid growth of data exfiltration carried out by cyber attacks, Covert Timing Channels (CTC) have become an imminent network security risk that continues to grow in both sophistication and utilization. These types of channels utilize inter-arrival times to steal sensitive data from the targeted networks. CTC detection relies increasingly on machine learning techniques, which utilize statistical-based metrics to separate malicious (covert) traffic flows from the legitimate (overt) ones. However, given the efforts of cyber attacks to evade detection and the growing column of CTC, covert channels detection needs to improve in both performance and precision to detect and prevent CTCs and mitigate the reduction of the quality of service caused by the detection process. In this article, we present an innovative image-based solution for fully automated CTC detection and localization. Our approach is based on the observation that the covert channels generate traffic that can be converted to colored images. Leveraging this observation, our solution is designed to automatically detect and locate the malicious part (i.e., set of packets) within a traffic flow. By locating the covert parts within traffic flows, our approach reduces the drop of the quality of service caused by blocking the entire traffic flows in which covert channels are detected. We first convert traffic flows into colored images, and then we extract image-based features for detection covert traffic. We train a classifier using these features on a large data set of covert and overt traffic. This approach demonstrates a remarkable performance achieving a detection accuracy of 95.83% for cautious CTCs and a covert traffic accuracy of 97.83% for 8 bit covert messages, which is way beyond what the popular statistical-based solutions can achieve.
Conference Name: IEEE Access
Source Code Analysis for Mobile Applications for Privacy Leaks. 2021 IEEE Madras Section Conference (MASCON). :1—6.
.
2021. Intelligent gadgets for example smartphones, tablet phones, and personal digital assistants play an increasingly important part in our lives and have become indispensable in our everyday routines. As a result, the market for mobile apps tends to grow at a rapid rate, and mobile app utilization has long eclipsed that of desktop software. The applications based on these smartphones are becoming vulnerable due to the use of open-source operating systems in these smart devices. These applications are vulnerable to smartphones because of memory leaks; they can steal personal data, hack our smartphones, and monitor our private activity, giving anyone significant financial loss. Because of these issues, smartphone security plays a vital role in our daily lives. The Play Store contains unrated applications which any unprofessional developer can develop, and these applications do not pass through the rigorous process of testing and analysis of code leaks. The existing developed system does not include a stringent procedure to examine and investigate source code to detect such vulnerabilities among mobile applications. This paper presented a dynamic analysis-based robust system for Source Code Analysis of Mobile Applications for Privacy Leaks using a machine learning algorithm. Furthermore, our framework is called Source Code Analysis of Mobile Applications (SCA-MA), which combines DynaLog and our machine learning-based classifier for Source Code Analysis of Mobile Applications. Our dataset will contain around 20000 applications to test and analyze vulnerabilities. We will perform dynamic analysis and separate the classification of vulnerable applications and safe applications. Our results show that we can detect vulnerabilities through our proposed system while reviewing code and provide better results than other existing frameworks. We have evaluated our large dataset with the pervasive way so we can detect even small privacy leak which can harm our app. Finally, we have compared results with existing methods, and framework performance is better than other methods.
A Study on Attack Pattern Generation and Hybrid MR-IDS for In-Vehicle Network. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :291–294.
.
2021. The CAN (Controller Area Network) bus, which transmits and receives ECU control information in vehicle, has a critical risk of external intrusion because there is no standardized security system. Recently, the need for IDS (Intrusion Detection System) to detect external intrusion of CAN bus is increasing, and high accuracy and real-time processing for intrusion detection are required. In this paper, we propose Hybrid MR (Machine learning and Ruleset) -IDS based on machine learning and ruleset to improve IDS performance. For high accuracy and detection rate, feature engineering was conducted based on the characteristics of the CAN bus, and the generated features were used in detection step. The proposed Hybrid MR-IDS can cope to various attack patterns that have not been learned in previous, as well as the learned attack patterns by using both advantages of rule set and machine learning. In addition, by collecting CAN data from an actual vehicle in driving and stop state, five attack scenarios including physical effects during all driving cycle are generated. Finally, the Hybrid MR-IDS proposed in this paper shows an average of 99% performance based on F1-score.
A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
.
2021. In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
.
2021. The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
SYN Flood Attack Detection and Mitigation using Machine Learning Traffic Classification and Programmable Data Plane Filtering. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :126—133.
.
2021. Distributed Denial of Service (DDoS) attacks are widely used by malicious actors to disrupt network infrastructures/services. A common attack is TCP SYN Flood that attempts to exhaust memory and processing resources. Typical mitigation mechanisms, i.e. SYN cookies require significant processing resources and generate large rates of backscatter traffic to block them. In this paper, we propose a detection and mitigation schema that focuses on generating and optimizing signature-based rules. To that end, network traffic is monitored and appropriate packet-level data are processed to form signatures i.e. unique combinations of packet field values. These are fed to machine learning models that classify them to malicious/benign. Malicious signatures corresponding to specific destinations identify potential victims. TCP traffic to victims is redirected to high-performance programmable XDPenabled firewalls that filter off ending traffic according to signatures classified as malicious. To enhance mitigation performance malicious signatures are subjected to a reduction process, formulated as a multi-objective optimization problem. Minimization objectives are (i) the number of malicious signatures and (ii) collateral damage on benign traffic. We evaluate our approach in terms of detection accuracy and packet filtering performance employing traces from production environments and high rate generated attack traffic. We showcase that our approach achieves high detection accuracy, significantly reduces the number of filtering rules and outperforms the SYN cookies mechanism in high-speed traffic scenarios.
Systematic and Efficient Anomaly Detection Framework using Machine Learning on Public ICS Datasets. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :292–297.
.
2021. Industrial Control Systems (ICSs) are used in several domains such as Transportation, Manufacturing, Defense and Power Generation and Distribution. ICSs deal with complex physical systems in order to achieve an industrial purpose with operational safety. Security has not been taken into account by design in these systems that makes them vulnerable to cyberattacks.In this paper, we rely on existing public ICS datasets as well as on the existing literature of Machine Learning (ML) applications for anomaly detection in ICSs in order to improve detection scores. To perform this purpose, we propose a systematic framework, relying on established ML algorithms and suitable data preprocessing methods, which allows us to quickly get efficient, and surprisingly, better results than the literature. Finally, some recommendations for future public ICS dataset generations end this paper, which would be fruitful for improving future attack detection models and then protect new ICSs designed in the next future.
Taking a Peek: An Evaluation of Anomaly Detection Using System calls for Containers. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
.
2021. The growth in the use of virtualization in the last ten years has contributed to the improvement of this technology. The practice of implementing and managing this type of isolated environment raises doubts about the security of such systems. Considering the host's proximity to a container, approaches that use anomaly detection systems attempt to monitor and detect unexpected behavior. Our work aims to use system calls to identify threats within a container environment, using machine learning based strategies to distinguish between expected and unexpected behaviors (possible threats).
Template Clustering for the Foundational Analysis of the Dark Web. 2021 IEEE International Conference on Big Data (Big Data). :2542—2549.
.
2021. The rapid rise of the Dark Web and supportive technologies has served as the backbone facilitating online illegal activity worldwide. These illegal activities supported by anonymisation technologies such as Tor has made it increasingly elusive to law enforcement agencies. Despite several successful law enforcement operations, illegal activity on the Dark Web is still growing. There are approaches to monitor, mine, and research the Dark Web, all with varying degrees of success. Given the complexity and dynamics of the services offered, we recognize the need for in depth analysis of the Dark Web with regard to its infrastructures, actors, types of abuse and their relationships. This involves the challenging task of information extraction from the very heterogeneous collection of web pages that make up the Dark Web. Most providers develop their services on top of standard frameworks such as WordPress, Simple Machine Forum, phpBB and several other frameworks to deploy their services. As a result, these service providers publish significant number of pages based on similar structural and stylistic templates. We propose an efficient, scalable, repeatable and accurate approach to cluster Dark Web pages based on those structural and stylistic features. Extracting relevant information from those clusters should make it feasible to conduct in depth Dark Web analysis. This paper presents our clustering algorithm to accelerate information extraction, and as a result improve attribution of digital traces to infrastructures or individuals in the fight against cyber crime.
Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework ICCAD Special Session Paper. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
.
2021. The security and privacy concerns along with the amount of data that is required to be processed on regular basis has pushed processing to the edge of the computing systems. Deploying advanced Neural Networks (NN), such as deep neural networks (DNNs) and spiking neural networks (SNNs), that offer state-of-the-art results on resource-constrained edge devices is challenging due to the stringent memory and power/energy constraints. Moreover, these systems are required to maintain correct functionality under diverse security and reliability threats. This paper first discusses existing approaches to address energy efficiency, reliability, and security issues at different system layers, i.e., hardware (HW) and software (SW). Afterward, we discuss how to further improve the performance (latency) and the energy efficiency of Edge AI systems through HW/SW-level optimizations, such as pruning, quantization, and approximation. To address reliability threats (like permanent and transient faults), we highlight cost-effective mitigation techniques, like fault-aware training and mapping. Moreover, we briefly discuss effective detection and protection techniques to address security threats (like model and data corruption). Towards the end, we discuss how these techniques can be combined in an integrated cross-layer framework for realizing robust and energy-efficient Edge AI systems.
Towards expert-guided elucidation of cyber attacks through interactive inductive logic programming. 2021 13th International Conference on Knowledge and Systems Engineering (KSE). :1—7.
.
2021. This paper proposes a logic-based machine learning approach called Acuity which is designed to facilitate user-guided elucidation of novel phenomena from evidence sparsely distributed across large volumes of linked relational data. The work builds on systems from the field of Inductive Logic Programming (ILP) by introducing a suite of new techniques for interacting with domain experts and data sources in a way that allows complex logical reasoning to be strategically exploited on large real-world databases through intuitive hypothesis-shaping and data-caching functionality. We propose two methods for rebutting or shaping candidate hypotheses and two methods for querying or importing relevant data from multiple sources. The benefits of Acuity are illustrated in a proof-of-principle case study involving a retrospective analysis of the CryptoWall ransomware attack using data from a cyber security testbed comprising a small business network and an infected laptop.
Trends in Cybersecurity Management Issues Related to Human Behaviour and Machine Learning. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1–8.
.
2021. The number of organisational cybersecurity threats continues to increase every year as technology advances. All too often, organisations assume that implementing systems security measures like firewalls and anti-virus software will eradicate cyber threats. However, even the most robust security systems are vulnerable to threats. As advanced as machine learning cybersecurity technology is becoming, it cannot be solely relied upon to solve cyber threats. There are other forces that contribute to these threats that are many-a-times out of an organisation's control i.e., human behaviour. This research article aims to create an understanding of the trends in key cybersecurity management issues that have developed in the past five years in relation to human behaviour and machine learning. The methodology adopted to guide the synthesis of this review was a systematic literature review. The guidelines for conducting the review are presented in the review approach. The key cybersecurity management issues highlighted by the research includes risky security behaviours demonstrated by employees, social engineering, the current limitations present in machine learning insider threat detection, machine learning enhanced cyber threats, and the underinvestment challenges faced in the cybersecurity domain.
URL Phishing Detection using Machine Learning Techniques based on URLs Lexical Analysis. 2021 12th International Conference on Information and Communication Systems (ICICS). :147—152.
.
2021. Phishing URLs mainly target individuals and/or organizations through social engineering attacks by exploiting the humans' weaknesses in information security awareness. These URLs lure online users to access fake websites, and harvest their confidential information, such as debit/credit card numbers and other sensitive information. In this work, we introduce a phishing detection technique based on URL lexical analysis and machine learning classifiers. The experiments were carried out on a dataset that originally contained 1056937 labeled URLs (phishing and legitimate). This dataset was processed to generate 22 different features that were reduced further to a smaller set using different features reduction techniques. Random Forest, Gradient Boosting, Neural Network and Support Vector Machine (SVM) classifiers were all evaluated, and results show the superiority of SVMs, which achieved the highest accuracy in detecting the analyzed URLs with a rate of 99.89%. Our approach can be incorporated within add-on/middleware features in Internet browsers for alerting online users whenever they try to access a phishing website using only its URL.
User Behaviour based Insider Threat Detection in Critical Infrastructures. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :489–494.
.
2021. Cyber security is an important concern in critical infrastructures such as banking and financial organizations, where a number of malicious insiders are involved. These insiders may be existing employees / users present within the organization and causing harm by performing any malicious activity and are commonly known as insider threats. Existing insider threat detection (ITD) methods are based on statistical analysis, machine and deep learning approaches. They monitor and detect malicious user activity based on pre-built rules which fails to detect unforeseen threats. Also, some of these methods require explicit feature engineering which results in high false positives. Apart from this, some methods choose relatively insufficient features and are computationally expensive which affects the classifier's accuracy. Hence, in this paper, a user behaviour based ITD method is presented to overcome the above limitations. It is a conceptually simple and flexible approach based on augmented decision making and anomaly detection. It consists of bi-directional long short term memory (bi-LSTM) for efficient feature extraction. For the purpose of classifying users as "normal" or "malicious", a binary class support vector machine (SVM) is used. CMU-CERT v4.2 dataset is used for testing the proposed method. The performance is evaluated using the following parameters: Accuracy, Precision, Recall, F- Score and AUC-ROC. Test results show that the proposed method outperforms the existing methods.