Biblio

Found 314 results

Filters: Keyword is cyber security  [Clear All Filters]
2020-08-24
Ulrich, Jacob J., Vaagensmith, Bjorn C., Rieger, Craig G., Welch, Justin J..  2019.  Software Defined Cyber-Physical Testbed for Analysis of Automated Cyber Responses for Power System Security. 2019 Resilience Week (RWS). 1:47–54.

As the power grid becomes more interconnected the attack surface increases and determining the causes of anomalies becomes more complex. Automated responses are a mechanism which can provide resilience in a power system by responding to anomalies. An automated response system can make intelligent decisions when paired with an automated health assessment system which includes a human in the loop for making critical decisions. Effective responses can be determined by developing a matrix which considers the likely impacts on resilience if a response is taken. A testbed assists to analyze these responses and determine their effects on system resilience.

2020-10-29
Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

2020-01-21
Headrick, William J, Subramanian, Gokul.  2019.  Using Layer 2 or 3 Switches to Augment Information Assurance in Modern ATE. 2019 IEEE AUTOTESTCON. :1–4.

For modern Automatic Test Equipment (ATE) one of the most daunting tasks is now Information Assurance (IA). What was once at most a secondary item consisting mainly of installing an Anti-Virus suite is now becoming one of the most important aspects of ATE. Given the current climate of IA it has become important to ensure ATE is kept safe from any breaches of security or loss of information. Even though most ATE are not on the Internet (or even on a local network for many) they are still vulnerable to some of the same attack vectors plaguing common computers and other electronic devices. This paper will discuss one method which can be used to ensure that modern ATE can continue to be used to test and detect faults in the systems they are designed to test. Most modern ATE include one or more Ethernet switches to allow communication to the many Instruments or devices contained within them. If the switches purchased are managed and support layer 2 or layer 3 of the Open Systems Interconnection (OSI) model they can also be used to help in the IA footprint of the station. Simple configurations such as limiting broadcast or multicast packets to the appropriate devices is the first step of limiting access to devices to what is needed. If the switch also includes some layer 3 like capabilities Virtual Local Area Networks can be created to further limit the communication pathways to only what is required to perform the required tasks. These and other simple switch configurations while not required can help limit the access of a virus or worm. This paper will discuss these and other configuration tools which can help prevent an ATE system from being compromised.

2020-07-16
Farivar, Faezeh, Haghighi, Mohammad Sayad, Barchinezhad, Soheila, Jolfaei, Alireza.  2019.  Detection and Compensation of Covert Service-Degrading Intrusions in Cyber Physical Systems through Intelligent Adaptive Control. 2019 IEEE International Conference on Industrial Technology (ICIT). :1143—1148.

Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects.

2020-12-17
Sandoval, S., Thulasiraman, P..  2019.  Cyber Security Assessment of the Robot Operating System 2 for Aerial Networks. 2019 IEEE International Systems Conference (SysCon). :1—8.

The Robot Operating System (ROS) is a widely adopted standard robotic middleware. However, its preliminary design is devoid of any network security features. Military grade unmanned systems must be guarded against network threats. ROS 2 is built upon the Data Distribution Service (DDS) standard and is designed to provide solutions to identified ROS 1 security vulnerabilities by incorporating authentication, encryption, and process profile features, which rely on public key infrastructure. The Department of Defense is looking to use ROS 2 for its military-centric robotics platform. This paper seeks to demonstrate that ROS 2 and its DDS security architecture can serve as a functional platform for use in military grade unmanned systems, particularly in unmanned Naval aerial swarms. In this paper, we focus on the viability of ROS 2 to safeguard communications between swarms and a ground control station (GCS). We test ROS 2's ability to mitigate and withstand certain cyber threats, specifically that of rogue nodes injecting unauthorized data and accessing services that will disable parts of the UAV swarm. We use the Gazebo robotics simulator to target individual UAVs to ascertain the effectiveness of our attack vectors under specific conditions. We demonstrate the effectiveness of ROS 2 in mitigating the chosen attack vectors but observed a measurable operational delay within our simulations.

2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
2020-01-20
Huang, Yongjie, Yang, Qiping, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection via CNN and Attention-Based Hierarchical RNN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :112–119.
Phishing websites have long been a serious threat to cyber security. For decades, many researchers have been devoted to developing novel techniques to detect phishing websites automatically. While state-of-the-art solutions can achieve superior performances, they require substantial manual feature engineering and are not adept at detecting newly emerging phishing attacks. Therefore, developing techniques that can detect phishing websites automatically and handle zero-day phishing attacks swiftly is still an open challenge in this area. In this work, we propose PhishingNet, a deep learning-based approach for timely detection of phishing Uniform Resource Locators (URLs). Specifically, we use a Convolutional Neural Network (CNN) module to extract character-level spatial feature representations of URLs; meanwhile, we employ an attention-based hierarchical Recurrent Neural Network(RNN) module to extract word-level temporal feature representations of URLs. We then fuse these feature representations via a three-layer CNN to build accurate feature representations of URLs, on which we train a phishing URL classifier. Extensive experiments on a verified dataset collected from the Internet demonstrate that the feature representations extracted automatically are conducive to the improvement of the generalization ability of our approach on newly emerging URLs, which makes our approach achieve competitive performance against other state-of-the-art approaches.
2020-01-21
Singh, Malvika, Mehtre, B.M., Sangeetha, S..  2019.  User Behavior Profiling Using Ensemble Approach for Insider Threat Detection. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–8.

The greatest threat towards securing the organization and its assets are no longer the attackers attacking beyond the network walls of the organization but the insiders present within the organization with malicious intent. Existing approaches helps to monitor, detect and prevent any malicious activities within an organization's network while ignoring the human behavior impact on security. In this paper we have focused on user behavior profiling approach to monitor and analyze user behavior action sequence to detect insider threats. We present an ensemble hybrid machine learning approach using Multi State Long Short Term Memory (MSLSTM) and Convolution Neural Networks (CNN) based time series anomaly detection to detect the additive outliers in the behavior patterns based on their spatial-temporal behavior features. We find that using Multistate LSTM is better than basic single state LSTM. The proposed method with Multistate LSTM can successfully detect the insider threats providing the AUC of 0.9042 on train data and AUC of 0.9047 on test data when trained with publically available dataset for insider threats.

2019-09-25
Andrew Bushby.  2019.  How deception can change cyber security defences. Science Direct. 2019(1):12-14.

Deception technology is used to lure, detect and defend against attacks. Deception technology should be used within organizations. There are five ways that deception technology is changing the cyber security landscape.

2020-08-13
Wang, Tianyi, Chow, Kam Pui.  2019.  Automatic Tagging of Cyber Threat Intelligence Unstructured Data using Semantics Extraction. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :197—199.
Threat intelligence, information about potential or current attacks to an organization, is an important component in cyber security territory. As new threats consecutively occurring, cyber security professionals always keep an eye on the latest threat intelligence in order to continuously lower the security risks for their organizations. Cyber threat intelligence is usually conveyed by structured data like CVE entities and unstructured data like articles and reports. Structured data are always under certain patterns that can be easily analyzed, while unstructured data have more difficulties to find fixed patterns to analyze. There exists plenty of methods and algorithms on information extraction from structured data, but no current work is complete or suitable for semantics extraction upon unstructured cyber threat intelligence data. In this paper, we introduce an idea of automatic tagging applying JAPE feature within GATE framework to perform semantics extraction upon cyber threat intelligence unstructured data such as articles and reports. We extract token entities from each cyber threat intelligence article or report and evaluate the usefulness of them. A threat intelligence ontology then can be constructed with the useful entities extracted from related resources and provide convenience for professionals to find latest useful threat intelligence they need.
2020-07-10
Koloveas, Paris, Chantzios, Thanasis, Tryfonopoulos, Christos, Skiadopoulos, Spiros.  2019.  A Crawler Architecture for Harvesting the Clear, Social, and Dark Web for IoT-Related Cyber-Threat Intelligence. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:3—8.

The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information that -given the appropriate tools and methods-may be identified, crawled and subsequently leveraged to actionable cyber-threat intelligence. In this work, we focus on the information gathering task, and present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web. The proposed architecture adopts a two-phase approach to data harvesting. Initially a machine learning-based crawler is used to direct the harvesting towards websites of interest, while in the second phase state-of-the-art statistical language modelling techniques are used to represent the harvested information in a latent low-dimensional feature space and rank it based on its potential relevance to the task at hand. The proposed architecture is realised using exclusively open-source tools, and a preliminary evaluation with crowdsourced results demonstrates its effectiveness.

2020-02-17
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.
2020-04-06
Xuebing, Wang, Na, Qin, Yantao, Liu.  2019.  A Secure Network Coding System Against Wiretap Attacks. 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). :62—67.

Cyber security is a vital performance metric for networks. Wiretap attacks belong to passive attacks. It commonly exists in wired or wireless networks, where an eavesdropper steals useful information by wiretapping messages being shipped on network links. It seriously damages the confidentiality of communications. This paper proposed a secure network coding system architecture against wiretap attacks. It combines and collaborates network coding with cryptography technology. Some illustrating examples are given to show how to build such a system and prove its defense is much stronger than a system with a single defender, either network coding or cryptography. Moreover, the system is characterized by flexibility, simplicity, and easy to set up. Finally, it could be used for both deterministic and random network coding system.

2020-11-20
Goyal, Y., Sharma, A..  2019.  A Semantic Machine Learning Approach for Cyber Security Monitoring. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :439—442.
Security refers to precautions designed to shield the availability and integrity of information exchanged among the digital global community. Information safety measure typically protects the virtual facts from unauthorized sources to get a right of entry to, disclosure, manipulation, alteration or destruction on both hardware and software technologies. According to an evaluation through experts operating in the place of information safety, some of the new cyber-attacks are keep on emerging in all the business processes. As a stop result of the analyses done, it's been determined that although the level of risk is not excessive in maximum of the attacks, it's far a severe risk for important data and the severity of those attacks is prolonged. Prior safety structures has been established to monitor various cyber-threats, predominantly using a gadget processed data or alerts for showing each deterministic and stochastic styles. The principal finding for deterministic patterns in cyber- attacks is that they're neither unbiased nor random over the years. Consequently, the quantity of assaults in the past helps to monitor the range of destiny attacks. The deterministic styles can often be leveraged to generate moderately correct monitoring.
2020-05-04
Zalozhnev, Alexey Yu., Andros, Denis A., Ginz, Vasiliy N., Loktionov, Anatoly Eu..  2019.  Information Systems and Network Technologies for Personal Data Cyber Security in Public Health. 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–5.
The article focuses on Personal Data Cyber Security Systems. These systems are the critical components for Health Information Management Systems of Public Health enterprises. The purpose of this article is to inform and provide the reader with Personal Data Cyber Security Legislation and Regulation in Public Health Sector and enlighten him with the Information Systems that were designed and implemented for Personal Data Cyber Security in Public Health.
2020-07-16
Singh, Vivek Kumar, Govindarasu, Manimaran, Porschet, Donald, Shaffer, Edward, Berman, Morris.  2019.  Distributed Power System Simulation using Cyber-Physical Testbed Federation: Architecture, Modeling, and Evaluation. 2019 Resilience Week (RWS). 1:26—32.

Development of an attack-resilient smart grid depends heavily on the availability of a representative environment, such as a Cyber Physical Security (CPS) testbed, to accelerate the transition of state-of-the-art research work to industry deployment by experimental testing and validation. There is an ongoing initiative to develop an interconnected federated testbed to build advanced computing systems and integrated data sharing networks. In this paper, we present a distributed simulation for power system using federated testbed in the context of Wide Area Monitoring System (WAMS) cyber-physical security. In particular, we have applied the transmission line modeling (TLM) technique to split a first order two-bus system into two subsystems: source and load subsystems, which are running in geographically dispersed simulators, while exchanging system variables over the internet. We have leveraged the resources available at Iowa State University's Power Cyber Laboratory (ISU PCL) and the US Army Research Laboratory (US ARL) to perform the distributed simulation, emulate substation and control center networks, and further implement a data integrity attack and physical disturbances targeting WAMS application. Our experimental results reveal the computed wide-area network latency; and model validation errors. Further, we also discuss the high-level conceptual architecture, inspired by NASPInet, necessary for developing the CPS testbed federation.

2020-04-10
Huang, Yongjie, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection Via Capsule-Based Neural Network. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :22—26.

As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.

2020-08-17
Małowidzki, Marek, Hermanowski, Damian, Bereziński, Przemysław.  2019.  TAG: Topological Attack Graph Analysis Tool. 2019 3rd Cyber Security in Networking Conference (CSNet). :158–160.
Attack graphs are a relatively new - at least, from the point of view of a practical usage - method for modeling multistage cyber-attacks. They allow to understand how seemingly unrelated vulnerabilities may be combined together by an attacker to form a chain of hostile actions that enable to compromise a key resource. An attack graph is also the starting point for providing recommendations for corrective actions that would fix or mask security problems and prevent the attacks. In the paper, we propose TAG, a topological attack graph analysis tool designed to support a user in a security evaluation and countermeasure selection. TAG employs an improved version of MulVAL inference engine, estimates a security level on the basis of attack graph and attack paths scoring, and recommends remedial actions that improve the security of the analyzed system.
2020-04-06
Wu, Yichang, Qiao, Yuansong, Ye, Yuhang, Lee, Brian.  2019.  Towards Improved Trust in Threat Intelligence Sharing using Blockchain and Trusted Computing. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :474–481.
Threat intelligence sharing is posited as an important aid to help counter cybersecurity attacks and a number of threat intelligence sharing communities exist. There is a general consensus that many challenges remain to be overcome to achieve fully effective sharing, including concerns about privacy, negative publicity, policy/legal issues and expense of sharing, amongst others. One recent trend undertaken to address this is the use of decentralized blockchain based sharing architectures. However while these platforms can help increase sharing effectiveness they do not fully address all of the above challenges. In particular, issues around trust are not satisfactorily solved by current approaches. In this paper, we describe a novel trust enhancement framework -TITAN- for decentralized sharing based on the use of P2P reputation systems to address open trust issues. Our design uses blockchain and Trusted Execution Environment technologies to ensure security, integrity and privacy in the operation of the threat intelligence sharing reputation system.
2019-06-17
Garae, J., Ko, R. K. L., Apperley, M..  2018.  A Full-Scale Security Visualization Effectiveness Measurement and Presentation Approach. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :639–650.
What makes a security visualization effective? How do we measure visualization effectiveness in the context of investigating, analyzing, understanding and reporting cyber security incidents? Identifying and understanding cyber-attacks are critical for decision making - not just at the technical level, but also the management and policy-making levels. Our research studied both questions and extends our Security Visualization Effectiveness Measurement (SvEm) framework by providing a full-scale effectiveness approach for both theoretical and user-centric visualization techniques. Our framework facilitates effectiveness through interactive three-dimensional visualization to enhance both single and multi-user collaboration. We investigated effectiveness metrics including (1) visual clarity, (2) visibility, (3) distortion rates and (4) user response (viewing) times. The SvEm framework key components are: (1) mobile display dimension and resolution factor, (2) security incident entities, (3) user cognition activators and alerts, (4) threat scoring system, (5) working memory load and (6) color usage management. To evaluate our full-scale security visualization effectiveness framework, we developed VisualProgger - a real-time security visualization application (web and mobile) visualizing data provenance changes in SvEm use cases. Finally, the SvEm visualizations aims to gain the users' attention span by ensuring a consistency in the viewer's cognitive load, while increasing the viewer's working memory load. In return, users have high potential to gain security insights in security visualization. Our evaluation shows that viewers perform better with prior knowledge (working memory load) of security events and that circular visualization designs attract and maintain the viewer's attention span. These discoveries revealed research directions for future work relating to measurement of security visualization effectiveness.
2019-08-05
Randhawa, Suneel, Turnbull, Benjamin, Yuen, Joseph, Dean, Jonathan.  2018.  Mission-Centric Automated Cyber Red Teaming. Proceedings of the 13th International Conference on Availability, Reliability and Security. :1:1–1:11.
Cyberspace is ubiquitous and is becoming increasingly critical to many societal, commercial, military, and national functions as it emerges as an operational space in its own right. Within this context, decision makers must achieve mission continuity when operating in cyberspace. One aspect of any comprehensive security program is the use of penetration testing; the use of scanning, enumeration and offensive techniques not unlike those used by a potential adversary. Effective penetration testing provides security insight into the network as a system in its entirety. Often though, this systemic view is lost in reporting outcomes, instead becoming a list of vulnerable or exploitable systems that are individually evaluated for remediation priority. This paper introduces Trogdor; a mission-centric automated cyber red-teaming system. Trogdor undertakes model based Automated Cyber Red Teaming (ACRT) and critical node analysis to visually present the impact of vulnerable resources to cyber dependent missions. Specifically, this work discusses the purpose of Trogdor, outlines its architecture, design choices and the technologies it employs. This paper describes an application of Trogdor to an enterprise network scenario; specifically, how Trogdor provides an understanding of potential mission impacts arising from cyber vulnerabilities and mission or business-centric decision support in selecting possible strategies to mitigate those impacts.
2020-05-08
Zhang, Shaobo, Shen, Yongjun, Zhang, Guidong.  2018.  Network Security Situation Prediction Model Based on Multi-Swarm Chaotic Particle Optimization and Optimized Grey Neural Network. 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). :426—429.
Network situation value is an important index to measure network security. Establishing an effective network situation prediction model can prevent the occurrence of network security incidents, and plays an important role in network security protection. Through the understanding and analysis of the network security situation, we can see that there are many factors affecting the network security situation, and the relationship between these factors is complex., it is difficult to establish more accurate mathematical expressions to describe the network situation. Therefore, this paper uses the grey neural network as the prediction model, but because the convergence speed of the grey neural network is very fast, the network is easy to fall into local optimum, and the parameters can not be further modified, so the Multi-Swarm Chaotic Particle Optimization (MSCPO)is used to optimize the key parameters of the grey neural network. By establishing the nonlinear mapping relationship between the influencing factors and the network security situation, the network situation can be predicted and protected.
2019-07-01
de Lima, Davi Ferreira, Bezerra, José Roberto, de Macedo Costa da Silva, Jorge Fredericson.  2018.  Privacy and Integrity Protection of Data in SCADA Systems. Proceedings of the 10th Latin America Networking Conference. :110–114.
The critical infrastructure of a country, due to its relevance and complexity, demands systems to facilitate the user interaction to correctly deal and share the information related to the monitored processes. The systems currently applied to monitor such infrastructures are based on SCADA architecture. The advent of the Internet jointly to the needs of fast information exchange at any place in order to support accurate decision-making processes, demands increasing interconnection among SCADA and management systems. However, such interconnection may expose sensitive data manipulated by such systems to hackers which may cause massive damages, financial loses, threats to human lives among others. Therefore, unprotected data may expose the systems to cyber-criminals by affecting any of the cyber-security principles, Confidentiality, Integrity, and Authenticity. This article presents four study cases using Wireshark to analyze a popular SCADA software to check user authentication process. The result of this research was the reading in plain text of the user authentication data used to access the control and monitoring system. As an immediate and minimal solution, this work presents low cost, easy setup and open source solutions are proposed using VPN and protocol obfuscator to improve security applying cryptography and hide the data passing through Virtual Private Network.
2020-11-09
Wheelus, C., Bou-Harb, E., Zhu, X..  2018.  Tackling Class Imbalance in Cyber Security Datasets. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :229–232.
It is clear that cyber-attacks are a danger that must be addressed with great resolve, as they threaten the information infrastructure upon which we all depend. Many studies have been published expressing varying levels of success with machine learning approaches to combating cyber-attacks, but many modern studies still focus on training and evaluating with very outdated datasets containing old attacks that are no longer a threat, and also lack data on new attacks. Recent datasets like UNSW-NB15 and SANTA have been produced to address this problem. Even so, these modern datasets suffer from class imbalance, which reduces the efficacy of predictive models trained using these datasets. Herein we evaluate several pre-processing methods for addressing the class imbalance problem; using several of the most popular machine learning algorithms and a variant of UNSW-NB15 based upon the attributes from the SANTA dataset.
2019-03-22
Ali, Syed Ahmed, Memon, Shahzad, Sahito, Farhan.  2018.  Challenges and Solutions in Cloud Forensics. Proceedings of the 2018 2Nd International Conference on Cloud and Big Data Computing. :6-10.

Cloud computing is cutting-edge platform in this information age, where organizations are shifting their business due to its elasticity, ubiquity, cost-effectiveness. Unfortunately the cyber criminals has used these characteristics for the criminal activities and victimizing multiple users at the same time, by their single exploitation which was impossible in before. Cloud forensics is a special branch of digital forensics, which aims to find the evidences of the exploitation in order to present these evidences in the court of law and bring the culprit to accountability. Collection of evidences in the cloud is not as simple as the traditional digital forensics because of its complex distributed architecture which is scattered globally. In this paper, various issues and challenges in the field of cloud forensics research and their proposed solutions have been critically reviewed, summarized and presented.