Biblio
Graph analysis can capture relationships between network entities and can be used to identify and rank anomalous hosts, users, or applications from various types of cyber logs. It is often the case that the data in the logs can be represented as a bipartite graph (e.g. internal IP-external IP, user-application, or client-server). State-of-the-art graph based anomaly detection often generalizes across all types of graphs — namely bipartite and non-bipartite. This confounds the interpretation and use of specific graph features such as degree, page rank, and eigencentrality that can provide a security analyst with situational awareness and even insights to potential attacks on enterprise scale networks. Furthermore, graph algorithms applied to data collected from large, distributed enterprise scale networks require accompanying methods that allow them to scale to the data collected. In this paper, we provide a novel, scalable, directional graph projection framework that operates on cyber logs that can be represented as bipartite graphs. We also present methodologies to further narrow returned results to anomalous/outlier cases that may be indicative of a cyber security event. This framework computes directional graph projections and identifies a set of interpretable graph features that describe anomalies within each partite.
The complexity, multiplicity, and impact of cyber-attacks have been increasing at an alarming rate despite the significant research and development investment in cyber security products and tools. The current techniques to detect and protect cyber infrastructures from these smart and sophisticated attacks are mainly characterized as being ad hoc, manual intensive, and too slow. We present in this paper AIM-PSC that is developed jointly by researchers at AVIRTEK and The University of Arizona Center for Cloud and Autonomic Computing that is inspired by biological systems, which can efficiently handle complexity, dynamism and uncertainty. In AIM-PSC system, an online monitoring and multi-level analysis are used to analyze the anomalous behaviors of networks, software systems and applications. By combining the results of different types of analysis using a statistical decision fusion approach we can accurately detect any types of cyber-attacks with high detection and low false alarm rates and proactively respond with corrective actions to mitigate their impacts and stop their propagation.
Industrial Control Systems (ICS) are found in critical infrastructure such as for power generation and water treatment. When security requirements are incorporated into an ICS, one needs to test the additional code and devices added do improve the prevention and detection of cyber attacks. Conducting such tests in legacy systems is a challenge due to the high availability requirement. An approach using Timed Automata (TA) is proposed to overcome this challenge. This approach enables assessment of the effectiveness of an attack detection method based on process invariants. The approach has been demonstrated in a case study on one stage of a 6- stage operational water treatment plant. The model constructed captured the interactions among components in the selected stage. In addition, a set of attacks, attack detection mechanisms, and security specifications were also modeled using TA. These TA models were conjoined into a network and implemented in UPPAAL. The models so implemented were found effective in detecting the attacks considered. The study suggests the use of TA as an effective tool to model an ICS and study its attack detection mechanisms as a complement to doing so in a real plant-operational or under design.
Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.
In a number of information security scenarios, human beings can be better than technical security measures at detecting threats. This is particularly the case when a threat is based on deception of the user rather than exploitation of a specific technical flaw, as is the case of spear-phishing, application spoofing, multimedia masquerading and other semantic social engineering attacks. Here, we put the concept of the human-as-a-security-sensor to the test with a first case study on a small number of participants subjected to different attacks in a controlled laboratory environment and provided with a mechanism to report these attacks if they spot them. A key challenge is to estimate the reliability of each report, which we address with a machine learning approach. For comparison, we evaluate the ability of known technical security countermeasures in detecting the same threats. This initial proof of concept study shows that the concept is viable.
This paper presents a novel feature learning model for cyber security tasks. We propose to use Auto-encoders (AEs), as a generative model, to learn latent representation of different feature sets. We show how well the AE is capable of automatically learning a reasonable notion of semantic similarity among input features. Specifically, the AE accepts a feature vector, obtained from cyber security phenomena, and extracts a code vector that captures the semantic similarity between the feature vectors. This similarity is embedded in an abstract latent representation. Because the AE is trained in an unsupervised fashion, the main part of this success comes from appropriate original feature set that is used in this paper. It can also provide more discriminative features in contrast to other feature engineering approaches. Furthermore, the scheme can reduce the dimensionality of the features thereby signicantly minimising the memory requirements. We selected two different cyber security tasks: networkbased anomaly intrusion detection and Malware classication. We have analysed the proposed scheme with various classifiers using publicly available datasets for network anomaly intrusion detection and malware classifications. Several appropriate evaluation metrics show improvement compared to prior results.
In the paper, we demonstrate a neuromorphic cognitive computing approach for Network Intrusion Detection System (IDS) for cyber security using Deep Learning (DL). The algorithmic power of DL has been merged with fast and extremely power efficient neuromorphic processors for cyber security. In this implementation, the data has been numerical encoded to train with un-supervised deep learning techniques called Auto Encoder (AE) in the training phase. The generated weights of AE are used as initial weights for the supervised training phase using neural networks. The final weights are converted to discrete values using Discrete Vector Factorization (DVF) for generating crossbar weight, synaptic weights, and thresholds for neurons. Finally, the generated crossbar weights, synaptic weights, threshold, and leak values are mapped to crossbars and neurons. In the testing phase, the encoded test samples are converted to spiking form by using hybrid encoding technique. The model has been deployed and tested on the IBM Neurosynaptic Core Simulator (NSCS) and on actual IBM TrueNorth neurosynaptic chip. The experimental results show around 90.12% accuracy for network intrusion detection for cyber security on the physical neuromorphic chip. Furthermore, we have investigated the proposed system not only for detection of malicious packets but also for classifying specific types of attacks and achieved 81.31% recognition accuracy. The neuromorphic implementation provides incredible detection and classification accuracy for network intrusion detection with extremely low power.
Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.
Vulnerability analysis is important procedure for a cyber security evaluation process. There are two types of vulnerability analysis, which is an interview for the facility manager and a vulnerability scanning with a software tool. It is difficult to use the vulnerability scanning tool on an operating nuclear plant control system because of the possibility of giving adverse effects to the system. The purpose of this paper is to suggest a method of cyber security vulnerability test using the DPPS and PMAS test-bed. Based on functions of the test-bed, possible threats and vulnerabilities in terms of cyber security were analyzed. Attack trees and test scenarios could be established with the consideration of attack vectors. It is expected that this method can be helpful to implement adequate security controls and verify whether the security controls make adverse impact to the inherent functions of the systems.
Because the Internet makes human lives easier, many devices are connected to the Internet daily. The private data of individuals and large companies, including health-related data, user bank accounts, and military and manufacturing data, are increasingly accessible via the Internet. Because almost all data is now accessible through the Internet, protecting these valuable assets has become a major concern. The goal of cyber security is to protect such assets from unauthorized use. Attackers use automated tools and manual techniques to penetrate systems by exploiting existing vulnerabilities and software bugs. To provide good enough security; attack methodologies, vulnerability concepts and defence strategies should be thoroughly investigated. The main purpose of this study is to show that the patches released for existing vulnerabilities at the operating system (OS) level and in software programs does not completely prevent cyber-attack. Instead, producing specific patches for each company and fixing software bugs by being aware of the software running on each specific system can provide a better result. This study also demonstrates that firewalls, antivirus software, Windows Defender and other prevention techniques are not sufficient to prevent attacks. Instead, this study examines different aspects of penetration testing to determine vulnerable applications and hosts using the Nmap and Metasploit frameworks. For a test case, a virtualized system is used that includes different versions of Windows and Linux OS.
The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.
Most of the social media platforms generate a massive amount of raw data that is slow-paced. On the other hand, Internet Relay Chat (IRC) protocol, which has been extensively used by hacker community to discuss and share their knowledge, facilitates fast-paced and real-time text communications. Previous studies of malicious IRC behavior analysis were mostly either offline or batch processing. This results in a long response time for data collection, pre-processing, and threat detection. However, since the threats can use the latest vulnerabilities to exploit systems (e.g. zero-day attack) and which can spread fast using IRC channels. Current IRC channel monitoring techniques cannot provide the required fast detection and alerting. In this paper, we present an alternative approach to overcome this limitation by providing real-time and autonomic threat detection in IRC channels. We demonstrate the capabilities of our approach using as an example the shadow brokers' leak exploit (the exploit leveraged by WannaCry ransomware attack) that was captured and detected by our framework.
Smart grid aims to improve control and monitoring routines to ensure reliable and efficient supply of electricity. The rapid advancements in information and communication technologies of Supervisory Control And Data Acquisition (SCADA) networks, however, have resulted in complex cyber physical systems. This added complexity has broadened the attack surface of power-related applications, amplifying their susceptibility to cyber threats. A particular class of system integrity attacks against the smart grid is False Data Injection (FDI). In a successful FDI attack, an adversary compromises the readings of grid sensors in such a way that errors introduced into estimates of state variables remain undetected. This paper presents an end-to-end case study of how to instantiate real FDI attacks to the Alternating Current (AC) –nonlinear– State Estimation (SE) process. The attack is realized through firmware modifications of the microprocessor-based remote terminal systems, falsifying the data transmitted to the SE routine, and proceeds regardless of perfect or imperfect knowledge of the current system state. The case study concludes with an investigation of an attack on the IEEE 14 bus system using load data from the New York Independent System Operator (NYISO).
This exploratory empirical paper investigates whether the sharing of unique malware files between domains is empirically associated with the sharing of Internet Protocol (IP) addresses and the sharing of normal, non-malware files. By utilizing a graph theoretical approach with a web crawling dataset from F-Secure, the paper finds no robust statistical associations, however. Unlike what might be expected from the still continuing popularity of shared hosting services, the sharing of IP addresses through the domain name system (DNS) seems to neither increase nor decrease the sharing of malware files. In addition to these exploratory empirical results, the paper contributes to the field of DNS mining by elaborating graph theoretical representations that are applicable for analyzing different network forensics problems.
In this workshop, participants coming from a variety of disciplinary backgrounds and countries–-China, South Korea, EU, and US–-will present their country's cyber security initiatives and challenges. Following the presentations, participants will discuss current trends, lessons learned in implementing the initiatives, and international collaboration. The workshop will culminate in the setting an agenda for future collaborative studies in cyber security.
The security of critical infrastructures such as oil and gas cyber-physical systems is a significant concern in today's world where malicious activities are frequent like never before. On one side we have cyber criminals who compromise cyber infrastructure to control physical processes; we also have physical criminals who attack the physical infrastructure motivated to destroy the target or to steal oil from pipelines. Unfortunately, due to limited resources and physical dispersion, it is impossible for the system administrator to protect each target all the time. In this research paper, we tackle the problem of cyber and physical attacks on oil pipeline infrastructure by proposing a Stackelberg Security Game of three players: system administrator as a leader, cyber and physical attackers as followers. The novelty of this paper is that we have formulated a real world problem of oil stealing using a game theoretic approach. The game has two different types of targets attacked by two distinct types of adversaries with different motives and who can coordinate to maximize their rewards. The solution to this game assists the system administrator of the oil pipeline cyber-physical system to allocate the cyber security controls for the cyber targets and to assign patrol teams to the pipeline regions efficiently. This paper provides a theoretical framework for formulating and solving the above problem.
Given a history of detected malware attacks, can we predict the number of malware infections in a country? Can we do this for different malware and countries? This is an important question which has numerous implications for cyber security, right from designing better anti-virus software, to designing and implementing targeted patches to more accurately measuring the economic impact of breaches. This problem is compounded by the fact that, as externals, we can only detect a fraction of actual malware infections. In this paper we address this problem using data from Symantec covering more than 1.4 million hosts and 50 malware spread across 2 years and multiple countries. We first carefully design domain-based features from both malware and machine-hosts perspectives. Secondly, inspired by epidemiological and information diffusion models, we design a novel temporal non-linear model for malware spread and detection. Finally we present ESM, an ensemble-based approach which combines both these methods to construct a more accurate algorithm. Using extensive experiments spanning multiple malware and countries, we show that ESM can effectively predict malware infection ratios over time (both the actual number and trend) upto 4 times better compared to several baselines on various metrics. Furthermore, ESM's performance is stable and robust even when the number of detected infections is low.
Most cyber network attacks begin with an adversary gaining a foothold within the network and proceed with lateral movement until a desired goal is achieved. The mechanism by which lateral movement occurs varies but the basic signature of hopping between hosts by exploiting vulnerabilities is the same. Because of the nature of the vulnerabilities typically exploited, lateral movement is very difficult to detect and defend against. In this paper we define a dynamic reachability graph model of the network to discover possible paths that an adversary could take using different vulnerabilities, and how those paths evolve over time. We use this reachability graph to develop dynamic machine-level and network-level impact scores. Lateral movement mitigation strategies which make use of our impact scores are also discussed, and we detail an example using a freely available data set.
In this article, we present a novel radial visualization of IDS alerts, named IDSPlanet, which helps administrators identify false positives, analyze attack patterns, and understand evolving network conditions. Inspired by celestial bodies, IDSPlanet is composed of Chrono Rings, Alert Continents, and Interactive Core. These components correspond with temporal features of alert types, patterns of behavior in affected hosts, and correlations amongst alert types, attackers and targets. The visualization provides an informative picture for the status of the network. In addition, IDSPlanet offers different interactions and monitoring modes, which allow users to interact with high-interest individuals in detail as well as to explore overall pattern.
In this article, we present a novel radial visualization of IDS alerts, named IDSPlanet, which helps administrators identify false positives, analyze attack patterns, and understand evolving network conditions. Inspired by celestial bodies, IDSPlanet is composed of Chrono Rings, Alert Continents, and Interactive Core. These components correspond with temporal features of alert types, patterns of behavior in affected hosts, and correlations amongst alert types, attackers and targets. The visualization provides an informative picture for the status of the network. In addition, IDSPlanet offers different interactions and monitoring modes, which allow users to interact with high-interest individuals in detail as well as to explore overall pattern.