Biblio
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
Modern power systems heavily rely on the associated cyber network, and cyber attacks against the control network may cause undesired consequences such as load shedding, equipment damage, and so forth. The behaviors of the attackers can be random, thus it is crucial to develop novel methods to evaluate the adequacy of the power system under probabilistic cyber attacks. In this study, the external and internal cyber structures of the substation are introduced, and possible attack paths against the breakers are analyzed. The attack resources and vulnerability factors of the cyber network are discussed considering their impacts on the success probability of a cyber attack. A procedure integrating the reliability of physical components and the impact of cyber attacks against breakers are proposed considering the behaviors of the physical devices and attackers. Simulations are conducted based on the IEEE RTS79 system. The impact of the attack resources and attack attempt numbers are analyzed for attackers from different threats groups. It is concluded that implementing effective cyber security measures is crucial to the cyber-physical power grids.
As information and communication networks are highly interconnected with the power grid, cyber security of the supervisory control and data acquisition (SCADA) system has become a critical issue in the power system. By intruding into the SCADA system via the remote access points, the attackers are able to eavesdrop critical data and reconfigure devices to trip the system breakers. The cyber attacks are able to impact the reliability of the power system through the SCADA system. In this paper, six cyber attack scenarios in the SCADA system are considered. A Bayesian attack graph model is used to evaluate the probabilities of successful cyber attacks on the SCADA system, which will result in breaker trips. A forced outage rate (FOR) model is proposed considering the frequencies of successful attacks on the generators and transmission lines. With increased FOR values resulted from the cyber attacks, the loss of load probabilities (LOLP) in reliability test system 79 (RTS79) are estimated. The results of the simulations demonstrate that the power system becomes less reliable as the frequency of successful attacks increases.
Due to cyber security is an important issue of the cloud computing. Insider threat becomes more and more important for cyber security, it is also much more complex issue. But till now, there is no equivalent to a vulnerability scanner for insider threat. We survey and discuss the history of research on insider threat analysis to know system dynamics is the best method to mitigate insider threat from people, process, and technology. In the paper, we present a system dynamics method to model insider threat. We suggest some concludes for future research who are interested in insider threat issue The study.
Multiple Security Domains Nondeducibility, MSDND, yields results even when the attack hides important information from electronic monitors and human operators. Because MSDND is based upon modal frames, it is able to analyze the event system as it progresses rather than relying on traces of the system. Not only does it provide results as the system evolves, MSDND can point out attacks designed to be missed in other security models. This work examines information flow disruption attacks such as Stuxnet and formally explains the role that implicit trust in the cyber security of a cyber physical system (CPS) plays in the success of the attack. The fact that the attack hides behind MSDND can be used to help secure the system by modifications to break MSDND and leave the attack nowhere to hide. Modal operators are defined to allow the manipulation of belief and trust states within the model. We show how the attack hides and uses the operator's trust to remain undetected. In fact, trust in the CPS is key to the success of the attack.
Botnets are one of the most destructive threats against the cyber security. Recently, HTTP protocol is frequently utilized by botnets as the Command and Communication (C&C) protocol. In this work, we aim to detect HTTP based botnet activity based on botnet behaviour analysis via machine learning approach. To achieve this, we employ flow-based network traffic utilizing NetFlow (via Softflowd). The proposed botnet analysis system is implemented by employing two different machine learning algorithms, C4.5 and Naive Bayes. Our results show that C4.5 learning algorithm based classifier obtained very promising performance on detecting HTTP based botnet activity.
Persisting to ignore the consequences of Cyber Warfare will bring severe concerns to all people. Hackers and governments alike should understand the barriers of which their methods take them. Governments use Cyber Warfare to give them a tactical advantage over other countries, defend themselves from their enemies or to inflict damage upon their adversaries. Hackers use Cyber Warfare to gain personal information, commit crimes, or to reveal sensitive and beneficial intelligence. Although both methods can provide ethical uses, the equivalent can be said at the other end of the spectrum. Knowing and comprehending these devices will not only strengthen the ability to detect these attacks and combat against them but will also provide means to divulge despotic government plans, as the outcome of Cyber Warfare can be worse than the outcome of conventional warfare. The paper discussed the concept of ethics and reasons that led to use information technology in military war, the effects of using cyber war on civilians, the legality of the cyber war and ways of controlling the use of information technology that may be used against civilians. This research uses a survey methodology to overlook the awareness of Arab citizens towards the idea of cyber war, provide findings and evidences of ethics behind the offensive cyber warfare. Detailed strategies and approaches should be developed in this aspect. The author recommended urging the scientific and technological research centers to improve the security and develop defending systems to prevent the use of technology in military war against civilians.
A system implementing real-time situational awareness through discovery, prevention, detection, response, audit, and management capabilities is seen as central to facilitating the protection of critical infrastructure systems. The effectiveness of providing such awareness technologies for electrical distribution companies is being evaluated in a series of field trials: (i) Substation Intrusion Detection / Prevention System (IDPS) and (ii) Security Information and Event Management (SIEM) System. These trials will help create a realistic case study on the effectiveness of such technologies with the view of forming a framework for critical infrastructure cyber security defense systems of the future.
This paper presents a survey on cyber security issues in in current industrial automation and control systems, which also includes observations and insights collected and distilled through a series of discussion by some of major Japanese experts in this field. It also tries to provide a conceptual framework of those issues and big pictures of some ongoing projects to try to enhance it.
Machine learning (ML) plays a central role in the solution of many security problems, for example enabling malicious and innocent activities to be rapidly and accurately distinguished and appropriate actions to be taken. Unfortunately, a standard assumption in ML - that the training and test data are identically distributed - is typically violated in security applications, leading to degraded algorithm performance and reduced security. Previous research has attempted to address this challenge by developing ML algorithms which are either robust to differences between training and test data or are able to predict and account for these differences. This paper adopts a different approach, developing a class of moving target (MT) defenses that are difficult for adversaries to reverse-engineer, which in turn decreases the adversaries' ability to generate training/test data differences that benefit them. We leverage the coevolutionary relationship between attackers and defenders to derive a simple, flexible MT defense strategy which is optimal or nearly optimal for a broad range of security problems. Case studies involving two distinct cyber defense applications demonstrate that the proposed MT algorithm outperforms standard static methods, offering effective defense against intelligent, adaptive adversaries.
The implementation of automated regulatory control has been around since the middle of the last century through analog means. It has allowed engineers to operate the plant more consistently by focusing on overall operations and settings instead of individual monitoring of local instruments (inside and outside of a control room). A similar approach is proposed for cyber security, where current border-protection designs have been inherited from information technology developments that lack consideration of the high-reliability, high consequence nature of industrial control systems. Instead of an independent development, however, an integrated approach is taken to develop a holistic understanding of performance. This performance takes shape inside a multiagent design, which provides a notional context to model highly decentralized and complex industrial process control systems, the nervous system of critical infrastructure. The resulting strategy will provide a framework for researching solutions to security and unrecognized interdependency concerns with industrial control systems.