Biblio
With the proliferation of data in Internet-related applications, incidences of cyber security have increased manyfold. Energy management, which is one of the smart city layers, has also been experiencing cyberattacks. Furthermore, the Distributed Energy Resources (DER), which depend on different controllers to provide energy to the main physical smart grid of a smart city, is prone to cyberattacks. The increased cyber-attacks on DER systems are mainly because of its dependency on digital communication and controls as there is an increase in the number of devices owned and controlled by consumers and third parties. This paper analyzes the major cyber security and privacy challenges that might inflict, damage or compromise the DER and related controllers in smart cities. These challenges highlight that the security and privacy on the Internet of Things (IoT), big data, artificial intelligence, and smart grid, which are the building blocks of a smart city, must be addressed in the DER sector. It is observed that the security and privacy challenges in smart cities can be solved through the distributed framework, by identifying and classifying stakeholders, using appropriate model, and by incorporating fault-tolerance techniques.
The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.
The evolving and new age cybersecurity threats has set the information security industry on high alert. This modern age cyberattacks includes malware, phishing, artificial intelligence, machine learning and cryptocurrency. Our research highlights the importance and role of Software Quality Assurance for increasing the security standards that will not just protect the system but will handle the cyber-attacks better. With the series of cyber-attacks, we have concluded through our research that implementing code review and penetration testing will protect our data's integrity, availability, and confidentiality. We gathered user requirements of an application, gained a proper understanding of the functional as well as non-functional requirements. We implemented conventional software quality assurance techniques successfully but found that the application software was still vulnerable to potential issues. We proposed two additional stages in software quality assurance process to cater with this problem. After implementing this framework, we saw that maximum number of potential threats were already fixed before the first release of the software.